This work presents a characterization of the stoichiometry and kinetics of anaerobic batch growth of Saccharomyces cerevisiae at cultivation temperatures between 12 and 30°C. To minimize the influence of the inoculum condition and ensure full adaptation to the cultivation temperature, the experiments were carried out in sequencing batch reactors. It was observed that the growth rate obtained in the first batch performed after each temperature shift was 10-30% different compared with the subsequent batches at the same temperature, which were much more reproducible. This indicates that the sequencing batch approach provides accurate and reproducible growth rate data. Data reconciliation was applied to the measured time patterns of substrate, biomass, carbon dioxide and byproducts with the constraint that the elemental conservation relations were satisfied, allowing to obtain consistent best estimates of all uptake and secretion rates. Subsequently, it was attempted to obtain an appropriate model description of the temperature dependency of these rates. It was found that the Ratkowsky model provided a better description of the temperature dependency of growth, uptake and secretion rates than the Arrhenius law. Most interesting was to find that most of the biomass-specific rates have the same temperature dependency, leading to a near temperature independent batch stoichiometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.