We propose a mathematical model from physical principles to predict the sound generated in nozzles with dissipation. The focus is on the sound generated from the acceleration of temperature inhomogeneities (also known as entropy waves), which is referred to as indirect noise. First, we model the dissipation caused by flow recirculation and wall friction with a friction factor, which enables us to derive quasi-one-dimensional equations from conservation laws. The model is valid for both compact nozzles and nozzles with a spatial extent. Second, the predictions from the proposed model are compared against the experimental data available in the literature. Third, we compute the nozzle transfer functions for a range of Helmholtz numbers and friction factors. It is found that the friction and the Helmholtz number have a significant effect on the gain/phase of the reflected and transmitted waves. The analysis is performed from subsonic to supersonic regimes (with and without shock waves). The acoustic transfer functions vary significantly because of non-isentropic effects and the Helmholtz number, in particular, in the subsonic-choked regime. Finally, we calculate the effect that the friction of a nozzle guide vane has on thermoacoustic stability. It is found that the friction and the Helmholtz number can change thermoacoustic stability from a linearly stable regime to a linearly unstable regime. The study opens up new possibilities for the accurate prediction of indirect noise in realistic nozzles with implications on both noise emissions and thermoacoustic stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.