The first year of life is a period of high mortality in animals. Reduced foraging capacities of naive individuals might be the primary cause of their mortality. These capacities are supposed to be progressively acquired during the first months of life. In this study, we investigate the ontogeny of flight capacities, by day and night, of first‐year individuals, and compare it with adults from two closely related species of great albatrosses: Amsterdam Diomedea amsterdamensis and wandering Diomedea exulans albatrosses which forage in different environmental conditions. We used 71 tracks of 71 juvenile birds and 141 of 116 incubating adults to compare both age categories. In order to explore the effect of moon light on night activity, we elaborated a new formula which improves the precision of the proxy of moon illumination. By day, we found that juveniles of both species reach some adult foraging capacities in less than two months. By night, albatrosses have reduced activity increasing during the first weeks at sea for juveniles and changing in accordance with moon illumination for both juveniles and adults. A peak of flight activity at dawn and dusk was apparent for both species. Interspecific comparison underlined that Amsterdam albatrosses were more active than wandering albatrosses, suggesting a difference in food and foraging strategy. Overall, we highlighted how life history traits, environmental conditions and time of the day affect the foraging activity of two related species of seabirds.
Huge improvements have been made throughout the years in collecting and standardising biodiversity data (Bisby 2000, Osawa 2019, Hardisty and Roberts 2013) and in overhauling how to make information in the field of biodiversity data management more FAIR (Findable, Accessible, Interoperable, Reusable) (Simons 2021), but there is still room for improvement. Most professionals working in protected areas, conservation groups, and research organisations lack the required know-how to improve the reuse ratio of their data. The GeoNature and GeoNature-Atlas (Monchicourt 2018, Corny et al. 2019) are a set of open-source software that facilitate data collection, management, validation, sharing (e.g., via Darwin Core standard) and visualisation. It is a powerful case study of collaborative work, which includes teams from private and public sectors with at least fifteen national parks and forty other organisations currently using and contributing to the package in France and Belgium (view it on github).
The term bio-logging is given to ‘the use of miniaturized animal-attached tags for logging and/or relaying data about an animal’s movements, behaviour, physiology, and/or environment’ (Rutz and Hays 2009). It has been spreading over the scientific world through the last ten years and will become even more popular in the next decade thanks to engineering progresses. Indeed, tags tend to miniaturize, and geolocalization technology, as well as network coverage, is getting improved and cheaper. Today, electronic tags are widely used to study species’ movements and migration, resulting in an enormous amount of data (
Li et al. 2015
, Thums et al. 2018). Currently, platforms like Movebank enable data storage, visualization and management. However, no easy-to-use tool is currently available for conducting a various array of pre-treatment procedures on those data, such as outliers identification, elevation or time management. In that context, we are developing an open source platform based on algorithms and machine learning to automatically return cleaned and annotated data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.