The Nrf2-Keap1 system plays a major role in cellular defense against oxidative stress. Upon exposure to electrophiles, the cysteine-rich protein Keap1 is covalently modified, and it is this modification of Keap1 that allows the accumulation and subsequent nuclear translocation of Nrf2 where it induces the transcription of over 100 protective genes. This mechanism can be exploited in drug discovery approaches to diseases such as chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), asthma, and neurodegenerative diseases like multiple sclerosis (MS) and Parkinson's, utilizing the modification of Keap1 by electrophiles, compounds that would not normally be considered useful in drug discovery programs. This Perspective discusses the development of potential therapies based on potent electrophiles, such as isothiocyanates and Michael acceptors, that, far from being associated with toxic events, can actually initiate a range of beneficial protective pathways.
We present the design, synthesis, and biological activity of three classes of tryptamine derivatives, which are non-planar analogues of the toxic anti-cancer agent fascaplysin. We show these compounds to be selective inhibitors of CDK4 over CDK2, the most active compound has an IC50 for the inhibition of CDK4 of 6 microM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.