Stainless Steel 304 (SS304) is a non magnetic material and has excellent corrosion resistance and forming characteristics which is mainly used in chemical, petrochemical, aerospace industries, etc. Few examples are kitchen wares, cryogenic vessels, surgical equipments and heat exchangers. However, most of these components require different machining processes to produce the desired product or assembly. But, during machining of SS 304, industries are facing major difficulties such as high tool wear and poor surface finish due to low thermal conductivity and high built up edge (BUE) tendency. Many researchers started working towards machinability of SS304 in different machining processes. Among these, few works have been started on drilling of this material. Drilling process is mainly used for assembly of structural parts and also used as primary process for boring, reaming, etc. By considering the above applications and challenges in machining of this material, the present study analyzes the effect of cutting speed, feed and machining environment on surface roughness and machining time during drilling process.Drilling experiments have been conducted in a jig boring machine using 10 mm diameter HSS twist drill bit by varying cutting speed (16, 22 and 28 m/min), feed (0.08, 0.12 and 0.16 mm/rev) and machining environment (dry, normal soluble oil flood coolant and kerosene) as per Taguchi’s L9 orthogonal array. The results indicated that, average surface roughness (Ra) increased from 2.088 μm to 6.647 μm when increase in cutting speed and feed. Roughness value decreased for kerosene environment compare to dry and coolant environment. Also, machining time decreased from 15.01 second to 5.58 second when increase in cutting speed and feed along with kerosene environment compared to dry and flood coolant condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.