Basolateral uptake of chloride by the HCl-secreting parietal cells of the gastric (oxyntic) glands is most likely mediated by a HCO3-/Cl- anion exchange mechanism. Circumstantial evidence indicates that in rodents the anion exchange proceeds through an anion exchanger 2(AE2)-like membrane protein. In the present study, we raised antibodies against a bacterial fusion protein expressing a approximately 26-kDa portion of the human AE2 sequence. These antibodies were used to identify and localize AE2 in the human stomach. Here we report that the mucosa of the human stomach expresses an approximately 160-kDa immunoreactive form of AE2 containing the AE2-specific exoplasmic domain (Z-loop) as identified by polymerase chain reaction. Immunostaining specific for AE2 was restricted to the basolateral membrane domain of parietal cells and was also detected in small epithelial cells localized in the glandular isthmus region. The latter cells most likely represent pre-parietal cells. Parietal cells were identified by simultaneous and sequential labelling with antibodies against the gastric H+,K(+)-ATPase and actin, respectively. Both actin and the H+,K(+)-ATPase were localized along the apical membrane of parietal cells and the membrane of their secretory intracellular canaliculi. In addition, actin was shown to be colocalized with AE2 along the basolateral cell surface. Discontinuous staining for AE2 coincided with infoldings of the basolateral plasma membrane labelled by the actin antibody. These observations indicate that AE2 might be placed at specialized (folded) microdomains of the basolateral cell surface by linkage to the actin-based cytoskeleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.