Liquid accumulation is a major problem in gas wells. The inability of gas to lift coproduced liquids to the surface imposes back pressure on the reservoir, limits the ultimate recovery and ultimately kills the well if improperly managed. Therefore, accurate prediction of its occurrence and reliable monitoring strategy is key to effectively handling liquid accumulation in gas wells. In this study, machine learning algorithms were used to develop regression and classification models to accurately predict the critical flowrate and the loading status of individual wells. The regression models used are the feed-forward neural network and a least squares support vector machine models while the decision trees model was used as the classification model to characterize the loading status of the wells investigated. These models were validated using actual published data and it was observed that the feed-forward neural network performed better in predicting the critical rate compared to the least squares support vector machine model with an R2 value of 0.9833, and thus was adopted. The feed-forward neural network model was further compared with other critical rate models; and a consistent result with least percent error of 5.571% was also observed. Form this study, it is obvious that the neural network model provide benefits and good prospects in investigating liquid loading phenomena in gas wells compared to empirical models that apply so many simplifying assumptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.