A measure of soil P status in agricultural soils is generally required for assisting with prediction of potential P loss from agricultural catchments and assessing risk for water quality. The objectives of this paper are twofold: (i) investigating the soil P status, distribution, and variability, both spatially and with soil depth, of two different first-order catchments; and (ii) determining variation in soil P concentration in relation to catchment topography (quantified as the "topographic index") and critical source areas (CSAs). The soil P measurements showed large spatial variability, not only between fields and land uses, but also within individual fields and in part was thought to be strongly influenced by areas where cattle tended to congregate and areas where manure was most commonly spread. Topographic index alone was not related to the distribution of soil P, and does not seem to provide an adequate indicator for CSAs in the study catchments. However, CSAs may be used in conjunction with soil P data for help in determining a more "effective" catchment soil P status. The difficulties in defining CSAs a priori, particularly for modeling and prediction purposes, however, suggest that other more "integrated" measures of catchment soil P status, such as baseflow P concentrations or streambed sediment P concentrations, might be more useful. Since observed soil P distribution is variable and is also difficult to relate to nationally available soil P data, any assessment of soil P status for determining risk of P loss is uncertain and problematic, given other catchment physicochemical characteristics and the sampling strategy employed.
We report on the evaluation of a novel grass hybrid that provides efficient forage production and could help mitigate flooding. Perennial ryegrass (Lolium perenne) is the grass species of choice for most farmers, but lacks resilience against extremes of climate. We hybridised L. perenne onto a closely related and more stress-resistant grass species, meadow fescue Festuca pratensis. We demonstrate that the L. perenne × F. pratensis cultivar can reduce runoff during the events by 51% compared to a leading UK nationally recommended L. perenne cultivar and by 43% compared to F. pratensis over a two year field experiment. We present evidence that the reduced runoff from this Festulolium cultivar was due to intense initial root growth followed by rapid senescence, especially at depth. Hybrid grasses of this type show potential for reducing the likelihood of flooding, whilst providing food production under conditions of changing climate.
1. Phosphorus (P) transfer from agricultural land to freshwater systems has been studied across many scales and environmental compartments that range from understanding biogeochemical processes in soils and fields, to assessment of localised in-stream biotic and ecological impacts. 2. This study tackles the challenges of scale when moving from soil hillslope to headwater catchment scale. The focus is on 'process rules' derived from reductionist approaches at the relatively fine scale, and exploring the signal and evidence thereof at the headwater catchment scale. 3. The methodology uses new data of P dynamics in agricultural grassland headwater catchments in south-west England. 4. We found the following: (i) it was not possible to disaggregate an influence of soil (Olsen) P concentration on P export at the larger scale; (ii) there was no clear temporally dynamic relationship between P additions of fertiliser and recycled manure and the resulting P transferred to the headwater scale; however, (iii) ploughing, digging of stream channel and leakage from farm storage all affected the temporal concentration dynamics; and (iv) overall P loss was influenced by higher long-term history of P inputs, livestock and the domination of hydrologic processes. 5. It is concluded that process rules derived at the finer soil or plot scale cannot always produce a clearly discernable signal when studied at the larger headwater catchment scale.
Bioenergy crops have a secondary benefit if they increase soil organic C (SOC) stocks through capture and allocation belowground. The effects of four genotypes of short-rotation coppice willow (Salix spp., 'Terra Nova' and 'Tora') and Miscanthus (M. × giganteus ('Giganteus') and M. sinensis ('Sinensis')) on roots, SOC and total nitrogen (TN) were quantified to test whether below-ground biomass controls SOC and TN dynamics. Soil cores were collected under ('plant') and between plants ('gap') in a field experiment on a temperate agricultural silty clay loam after 4 and 6 years' management. Root density was greater under Miscanthus for plant (up to 15.5 kg m −3 ) compared with gap (up to 2.7 kg m −3 ), whereas willow had lower densities (up to 3.7 kg m −3 ). Over 2 years, SOC increased below 0.2 m depth from 7.1 to 8.5 kg m −3 and was greatest under Sinensis at 0-0.1 m depth (24.8 kg m −3 ). Miscanthus-derived SOC, based on stable isotope analysis, was greater under plant (11.6 kg m −3 ) than gap (3.1 kg m −3 ) for Sinensis. Estimated SOC stock change rates over the 2-year period to 1-m depth were 6.4 for Terra Nova, 7.4 for Tora, 3.1 for Giganteus and 8.8 Mg ha −1 year −1 for Sinensis. Rates of change of TN were much less. That SOC matched root mass down the profile, particularly under Miscanthus, indicated that perennial root systems are an important contributor. Willow and Miscanthus offer both biomass production and C sequestration when planted in arable soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.