The detailed composition and structure of the Caenorhabditis elegans surface are unknown. Previous genetic studies used antibody or lectin binding to identify srf genes that play roles in surface determination. Infection by Microbacterium nematophilum identified bus (bacterially unswollen) genes that also affect surface characteristics. We report that biofilms produced by Yersinia pestis and Y. pseudotuberculosis, which bind the C. elegans surface predominantly on the head, can be used to identify additional surface-determining genes. A screen for C. elegans mutants with a biofilm absent on the head (Bah) phenotype identified three novel genes: bah-1, bah-2, and bah-3. The bah-1 and bah-2 mutants have slightly fragile cuticles but are neither Srf nor Bus, suggesting that they are specific for surface components involved in biofilm attachment. A bah-3 mutant has normal cuticle integrity, but shows a stage-specific Srf phenotype. The screen produced alleles of five known surface genes: srf-2, srf-3, bus-4, bus-12, and bus-17. For the X-linked bus-17, a paternal effect was observed in biofilm assays.
Elemental tungsten powder was mechanically milled by planetary mill for 100 h. Particles were thinned down to nanometre scale. The shape of the milled powders was flat cylindrical with average diameter and length 12?5 and 46?5 nm respectively. The corresponding crystallite size obtained by X-ray diffraction (XRD) was 26?96 nm. The results obtained by XRD and small angle X-ray scattering were well supported by transmission electron microscopy and high resolution transmission electron microscopy results. The maximum shrinkage of the compact has been observed at y1500 K, which has been used as a guideline for sintering experiments. The powders sintered at 1773 K have resulted in 96% relative density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.