Recurrent chromosomal abnormalities and gene mutations detected at the time of diagnosis of acute myeloid leukemia (AML) are associated with particular disease features, treatment response and survival of AML patients, and are used to denote specific disease entities in the World Health Organization classification of myeloid neoplasms and acute leukemia. However, large studies that integrate cytogenetic and comprehensive mutational information are scarce. We created a comprehensive oncoprint of mutations associated with recurrent cytogenetic findings by combining the information on mutational patterns of 80 cancer- and leukemia-associated genes with cytogenetic findings in 1603 adult patients with de novo AML. We show unique differences in the mutational profiles among major cytogenetic subsets, identify novel associations between recurrent cytogenetic abnormalities and both specific gene mutations and gene functional groups, and reveal differences in cytogenetic and mutational features between patients younger than 60 years and those aged 60 years or older. The identified associations between cytogenetic and molecular genetic data may help guide mutation testing in AML, and result in more focused application of targeted therapy in patients with de novo AML.
Acute myeloid leukemia (AML) is hypothesized to be sustained by self-renewing leukemia stem cells (LSCs). Recently, gene expression signatures (GES) from functionally defined AML LSC populations were reported, and expression of a ‘core enriched’ (CE) GES, representing 44 genes activated in LCSs, conferred shorter survival in cytogenetically normal (CN) AML. The prognostic impact of the CE GES in the context of other molecular markers, including gene mutations and microRNA (miR) expression alterations, is unknown and its clinical utility is unclear. We studied associations of the CE GES with known molecular prognosticators, miR expression profiles, and outcomes in 364 well-characterized CN-AML patients. A high CE score (CEhigh) associated with FLT3-internal tandem duplication, WT1 and RUNX1 mutations, wild-type CEBPA and TET2, and high ERG, BAALC and miR-155 expression. CEhigh patients had a lower complete remission (CR) rate (P=0.003) and shorter disease-free (DFS, P<0.001) and overall survival (OS, P<0.001) than CElow patients. These associations persisted in multivariable analyses adjusting for other prognosticators (CR, P=0.02; DFS, P<0.001; and OS, P<0.001). CEhigh status was accompanied by a characteristic miR expression signature. Fifteen miRs were upregulated in both younger and older CEhigh patients, including miRs relevant for stem cell function. Our results support the clinical relevance of LSCs and improve risk stratification in AML.
Core-binding factor acute myeloid leukemia (CBF-AML) is defined by the presence of either t(8;21)(q22;q22)/RUNX1-RUNX1T1 or inv(16)(p13.1q22)/t(16;16)(p13.1;q22)/CBFB-MYH11. The resulting fusion genes require a “second hit” to initiate leukemogenesis. Mutation assessment of 177 adults with CBF-AML, including 68 with t(8;21) and 109 with inv(16)/t(16;16), identified not only mutations well-known in CBF-AML, but also mutations in the CCND1 and CCND2 genes, which represent novel frequent molecular alterations in AML with t(8;21). Altogether, CCND1 (n=2) and CCND2 (n=8) mutations were detected in 10 (15%) patients with t(8;21) in our cohort. A single CCND2 mutation was also found in one (0.9%) patient with inv(16). In contrast, CCND1 and CCND2 mutations were detected in only 11 (0.77%) of 1,426 non-CBF-AML patients. All CCND2 mutations cluster around the highly conserved amino acid residue threonine 280 (Thr280). We show that Thr280Ala mutated CCND2 leads to increased phosphorylation of the retinoblastoma protein, thereby causing significant cell cycle changes and increased proliferation of AML cell lines. The identification of CCND1 and CCND2 mutations as frequent mutational events in t(8;21) AML may provide further justification for cell cycle-directed therapy in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.