The haplodiploid wasp genus Nasonia is a promising model for studying the evolution of genic incompatibilities due to the existence of interfertile species and haploid males. The latter allows for significantly reducing the sample size required to detect and map recessive dysfunctional genic interactions. We exploited these features to study the genetics of intrinsic hybrid inviability in male F 2 hybrids of Nasonia giraulti and N. vitripennis. Analyzing marker segregation in 225 hybrid embryos, we inferred a linkage map with 38 framework markers. The markers were tested for marker transmission ratio distortion (MTRD) and interchromosomal linkage disequilibrium in populations of embryonic and adult hybrids. We found evidence for four transmission ratio distorting loci (TRDL). Three TRDL showed a deficit of the N. giraulti allele in hybrids with N. vitripennis cytoplasm. A separate TRDL exhibited a deficiency of the N. vitripennis allele in hybrids with N. giraulti cytoplasm. We ascribe the observed MTRD in adult hybrids to cytonuclear genic incompatibilities causing differential mortality during development since hybrid embryos did not show MTRD. The identified cytonuclear genic incompatibilities in F 2 hybrids with N. vitripennis cytoplasm account for most of the intrinsic hybrid inviability in this cross. The high mortality rate in F 2 hybrids with N. giraulti cytoplasm cannot be explained by the single identified TRDL alone, however.
Sex pheromones play a pivotal role in the communication of many sexually reproducing organisms. Accordingly, speciation is often accompanied by pheromone diversification enabling proper mate finding and recognition. Current theory implies that chemical signals are under stabilizing selection by the receivers who thereby maintain the integrity of the signals. How the tremendous diversity of sex pheromones seen today evolved is poorly understood. Here we unravel the genetics of a newly evolved pheromone phenotype in wasps and present results from behavioural experiments indicating how the evolution of a new pheromone component occurred in an established sender-receiver system. We show that male Nasonia vitripennis evolved an additional pheromone compound differing only in its stereochemistry from a pre-existing one. Comparative behavioural studies show that conspecific females responded neutrally to the new pheromone phenotype when it evolved. Genetic mapping and gene knockdown show that a cluster of three closely linked genes accounts for the ability to produce this new pheromone phenotype. Our data suggest that new pheromone compounds can persist in a sender's population, without being selected against by the receiver and without the receiver having a pre-existing preference for the new pheromone phenotype, by initially remaining unperceived. Our results thus contribute valuable new insights into the evolutionary mechanisms underlying the diversification of sex pheromones. Furthermore, they indicate that the genetic basis of new pheromone compounds can be simple, allowing them to persist long enough in a population for receivers to evolve chemosensory adaptations for their exploitation.
Homologous meiotic recombination occurs in most sexually reproducing organisms, yet its evolutionary advantages are elusive. Previous research explored recombination in the honeybee, a eusocial hymenopteran with an exceptionally high genome-wide recombination rate. A comparable study in a non-social member of the Hymenoptera that would disentangle the impact of sociality from Hymenoptera-specific features such as haplodiploidy on the evolution of the high genome-wide recombination rate in social Hymenoptera is missing. Utilizing single-nucleotide polymorphisms (SNPs) between two Nasonia parasitoid wasp genomes, we developed a SNP genotyping microarray to infer a high-density linkage map for Nasonia. The map comprises 1,255 markers with an average distance of 0.3 cM. The mapped markers enabled us to arrange 265 scaffolds of the Nasonia genome assembly 1.0 on the linkage map, representing 63.6% of the assembled N. vitripennis genome. We estimated a genome-wide recombination rate of 1.4–1.5 cM/Mb for Nasonia, which is less than one tenth of the rate reported for the honeybee. The local recombination rate in Nasonia is positively correlated with the distance to the center of the linkage groups, GC content, and the proportion of simple repeats. In contrast to the honeybee genome, gene density in the parasitoid wasp genome is positively associated with the recombination rate; regions of low recombination are characterized by fewer genes with larger introns and by a greater distance between genes. Finally, we found that genes in regions of the genome with a low recombination frequency tend to have a higher ratio of non-synonymous to synonymous substitutions, likely due to the accumulation of slightly deleterious non-synonymous substitutions. These findings are consistent with the hypothesis that recombination reduces interference between linked sites and thereby facilitates adaptive evolution and the purging of deleterious mutations. Our results imply that the genomes of haplodiploid and of diploid higher eukaryotes do not differ systematically in their recombination rates and associated parameters.
Wasps of the genus Nasonia are important biological control agents of house flies and related filth flies, which are major vectors of human pathogens. Species of Nasonia (Hymenoptera: Pteromalidae) are not easily differentiated from one another by morphological characters, and molecular markers for their reliable identification have been missing so far. Here, we report eight single-nucleotide polymorphism and three sequence-tagged site markers derived from expressed sequenced tag libraries for the two closely related and regionally sympatric species N. giraulti and N. vitripennis. We studied variation of these markers in natural populations of the two species, and we mapped them in the Nasonia genome. The markers are species-diagnostic and evenly spread over all five chromosomes. They are ideal for rapid species identification and hybrid recognition, and they can be used to map economically relevant quantitative trait loci in the Nasonia genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.