Pest and pathogen losses jeopardise global food security and ever since the 19th century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P. infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1, Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics.
Co-dominant microsatellite molecular markers for Phytophthora infestans were developed and their potential for monitoring the genetic variation in populations was demonstrated in the UK, across Europe and worldwide. Markers were developed according to two strategies. First, several thousand P. infestans expressed sequence tag (EST) and bacterial artificial chromosome (BAC) sequences were screened for the presence of simple sequence repeat (SSR) motifs, and, of these, 100 candidate loci were selected for further investigation. Primer pairs developed to these loci were tested against a panel of 10 P. infestans isolates and approximately 10% were shown to be polymorphic and therefore appropriate for further testing. Secondly, the construction and screening of a partial genomic library resulted in the development of one additional polymorphic marker. The resulting 12 SSR markers were converted to higher-throughput fluorescence-based assays and used in combination with two previously published markers to characterize a wider collection of 90 P. infestans isolates from the UK and six other countries. Several isolates from the closely related species P. mirabilis , P. ipomoea and P. phaseoli collected from around the world were also genotyped using these markers. Amongst the 90 isolates of P. infestans examined, considerable SSR diversity was observed, with 68 different genotypes and an average of 3·9 (range 2-9) alleles per locus. When other Phytophthora species were genotyped, all loci were successfully amplified and the majority were polymorphic, indicating their transferability for the potential study of other closely related taxa.
• A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2. Expression of PiAVR2 in a virulent P. infestans isolate conveys a gain-of-avirulence phenotype, indicating that this is a dominant gene triggering R2-dependent disease resistance. PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants. Isolates infecting R2 plants express PiAVR2-like, which evades recognition by R2. PiAVR2 and PiAVR2-like differ in 13 amino acids, eight of which are in the C-terminal effector domain; one or more of these determines recognition by R2. Nevertheless, few polymorphisms were observed within each gene in pathogen isolates, suggesting limited selection pressure for change within PiAVR2 and PiAVR2-like. • Our results direct a search for R genes recognizing PiAVR2-like, which, deployed with R2, may exert strong selection pressure against the P. infestans population.
A specific and sensitive PCR assay was developed for the detection and identification of Rhizoctonia solani AG-3, the main causal pathogen of stem canker and black scurf of potato. A conventional primer set (Rs1F2 and Rs2R1) was designed from the nuclear ribosomal internal transcribed spacer (ITS1 and ITS2) regions of R. solani . Following PCR amplification, a 0·5-kb product was amplified from DNA of all isolates of AG-3 using primers Rs1F2 and Rs2R1. No product was amplified when DNA from isolates belonging to a range of other R. solani anastomosis groups or from a selection of other potato pathogens was tested, confirming the specificity of the primers for AG-3 only. Rhizoctonia solani AG-3 was also detected in potato tissue with varying black scurf severity, and in soil inoculated with sclerotia of R. solani to a minimum detection level of 5 × 10 − 4 g sclerotia /g soil. In addition, specific primers RsTqF1 (based on the Rs1F2 sequence) and RsTqR1, and a TaqMan™ fluorogenic probe RQP1, were designed to perform real-time quantitative (TaqMan) PCR. The conventional PCR and real-time PCR assays were compared and combined with direct DNA extraction from soil and a seed-baiting method to determine the most reliable method for the detection and quantification of AG-3 in both artificially inoculated field soil and naturally infested soils. It was shown that direct DNA extractions from soil could be problematic, although AG-3 was detectable using this method combined with the real-time PCR assay. The amplification of Rhizoctonia solani by seed baiting increased the sensitivity of the assay compared with direct extraction of DNA from the soil, and AG-3 was detectable in artificially inoculated and naturally infested soils when seed baiting was combined with either the conventional PCR or the real-time PCR assay. The potential for using these rapid and quantitative AG-3-specific assays to address epidemiological questions and as tools for decision-making in disease management is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.