The trophoblast invasion of uteroplacental arteries in the guinea pig has been studied by means of electron microscopy and immunohistochemisty. To identify trophoblast cells, smooth muscle cells, and endothelial cells, antibodies against cytokeratins, smooth muscle myosin, desmin, and vimentin were employed. Furthermore, the immunohistochemical expression patterns of nitric oxide synthase isoforms (eNOS, mNOS and bNOS) were studied and were compared with the enzyme histochemical staining for NADPH-diaphorase. Dilation of uteroplacental arteries begins prior to day 30, when trophoblast cells that coexpress endothelial and macrophage nitric oxide synthase can be found in the vicinity of the vessels and replace the surrounding peritoneal mesothelium. Trophoblast invasion of the arterial walls and the subsequent wall destruction are only secondary effects. Starting around day 50, the final steps of pregnancy-dependent vessel modifications involve intraarterial trophoblast adhesion to the endothelium and subsequent replacement of the endothelium by the trophoblast cells. These may centrifugally invade the vessel media eventually forming intraluminal plugs. These findings led us to the conclusion that in the guinea pig pregnancy-induced physiological dilation of the uteroplacental arteries is due to the effect of nitric oxide rather than being caused by trophoblast-induced media destruction.
Polyclonal antibodies to chicken gizzard calponin were used to localize calponin and determine calponin expression in rabbit and human aortic smooth muscle cells in culture. Calponin was localized on the microfilament bundles of cultured smooth muscle cells. Early in primary culture, calponin staining was accumulated preferentially in the central part of the cell body. With time in culture, the number of calponin-negative smooth muscle cells increased while the distribution of calponin in calponin-positive cells became more even along the stress fibers. Calponin content and the calponin/actin ratio decreased about 5-fold in rabbit aortic smooth muscle cells during the first week in primary culture and remained low in proliferating cells. The same tendency in calponin expression was observed when human vascular smooth muscle was studied. On cryostat sections of human umbilical cord, calponin antibodies mainly stained vessel walls of both the arteries and veins, although less intensive labelling was also observed in non-vascular tissue. When primary isolates of human aortic intimal and medial smooth muscle cells were compared with corresponding passaged cultures, it was found that calponin content was reduced about 9-fold in these cells in culture and was similar to the amount of calponin in endothelial cells and fibroblasts. Thus, high calponin expression may be used as an additional marker of vascular smooth muscle cell contractile phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.