We demonstrate the asymptotic analysis of a semi-linear optimal control problem posed on a smooth oscillating boundary domain in the present paper. We have considered a more general oscillating domain than the usual “pillar-type” domains. Consideration of such general domains will be useful in more realistic applications like circular domain with rugose boundary. We study the asymptotic behavior of the problem under consideration using a new generalized periodic unfolding operator. Further, we are studying the homogenization of a non-linear optimal control problem and such non-linear problems are limited in the literature despite the fact that they have enormous real-life applications. Among several other technical difficulties, the absence of a sufficient criteria for the optimal control is one of the most attention-grabbing issues in the current setting. We also obtain corrector results in this paper.
We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [φ(r,τ)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of φ(r,τ) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Δn(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.