Reduced intrahepatic endothelial nitric oxide synthase (eNOS) activity contributes to the pathogenesis of portal hypertension (PHT) associated with cirrhosis. We evaluated whether asymmetric dimethylarginine (ADMA), a putative endogenous NOS inhibitor, may be involved in PHT associated with cirrhosis. Two rat models of cirrhosis (thioacetamide [TAA]-induced and bile duct excision [BDE]-induced, n ؍ 10 each), one rat model of PHT without cirrhosis (partial portal vein-ligated [PPVL], n ؍ 10), and sham-operated control rats (n ؍ 10) were studied. We assessed hepatic NOS activity, eNOS protein expression, plasma ADMA levels, and intrahepatic endothelial function. To evaluate intrahepatic endothelial function, concentration-effect curves of acetylcholine were determined in situ in perfused normal rat livers and livers of rats with TAAor BDE-induced cirrhosis (n ؍ 10) that had been preincubated with either vehicle or ADMA; in addition, measurements of nitrite/nitrate (NOx) and ADMA were made in perfusates. Both models of cirrhosis exhibited decreased hepatic NOS activity. In rats with TAA-induced cirrhosis, this decrease was associated with reduced hepatic eNOS protein levels and immunoreactivity. Rats with BDE-induced cirrhosis had eNOS protein levels comparable to those in control rats but exhibited significantly higher plasma ADMA levels than those in all other groups. In normal perfused liver, ADMA induced impaired endothelium-dependent vasorelaxation and reduced NOx perfusate levels, phenomena that were mimicked by N G -nitro-L-arginine-methyl ester. In contrast to perfused livers with cirrhosis induced by TAA, impaired endothelial cell-mediated relaxation in perfused livers with cirrhosis induced by BDE was exacerbated by ADMA and was associated with a decreased rate of removal of ADMA (34.3% ؎ 6.0% vs. 70.9% ؎ 3.2%). In conclusion, in rats with TAA-induced cirrhosis, decreased eNOS enzyme levels seem to be responsible for impaired NOS activity; in rats with biliary cirrhosis, an endogenous NOS inhibitor, ADMA, may mediate decreased NOS activity. (HEPATOLOGY 2005;42:1382-1390
Background: Portal hypertension in cirrhosis results from enhanced intrahepatic resistance to an augmented inflow. The former is partly due to an imbalance between intrahepatic vasoconstriction and vasodilatation. Enhanced endothelin-1 and decreased activity of hepatic constitutive endothelial nitric oxide synthase (NOS 3) was reported in carbon tetrachloride (CCl 4 ) cirrhotic rat liver. Aims: To study whether an increase in hepatic NOS 3 could be obtained in the CCl 4 cirrhotic rat liver by in vivo cDNA transfer and to investigate a possible effect on portal pressure. Methods: Hepatic NOS 3 immunohistochemistry and western blotting were used to measure the amount of NOS 3 protein. Recombinant adenovirus, carrying cDNA encoding human NOS 3, was injected into the portal vein of CCl 4 cirrhotic rats. Cirrhotic controls received carrier buffer, naked adenovirus, or adenovirus carrying the lac Z gene. Results: NOS 3 immunoreactivity and amount of protein (western blotting) were significantly decreased in CCl 4 cirrhotic livers. Following cDNA transfer, NOS 3 expression and the amount of protein were partially restored. Portal pressure was 11.4 (1.6) mm Hg in untreated cirrhotic (n=9) and 11.8 (0.6) in lac Z transfected (n=4) cirrhotic rats but was reduced to 7.8 (1.0) mm Hg (n=9) five days after NOS 3 cDNA transfer. No changes were observed in systemic haemodynamics, in liver tests or urinary nitrates, or in NOS 3 expression in lung or kidney, indicating a highly selective transfer. Conclusions: NOS 3 cDNA transfer to cirrhotic rat liver is feasible and the increase in hepatic NOS 3 leads to a marked decrease in portal hypertension without systemic effects. These data indicate a major haemodynamic role of intrahepatic NOS 3 in the pathogenesis of portal hypertension in CCl 4 cirrhosis.
The mechanical properties of the arterial wall depend not only on collagen and elastin, but also on proteoglycans. The quantity and quality of proteoglycans depend on the rate of their synthesis and degradation. Proteoglycans are degraded by exoglycosidases and proteases. In the wall of an aortic aneurysm, we found an increase in the activity of exoglycosidases (beta-hexosaminidase, beta-galactosidase and alpha-mannosidase) in comparison with normal and atheromatous aortas, which may indicate a participation of exoglycosidases in decreasing the concentration of proteoglycans in an aneurysmatic arterial wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.