A generalization of the classical Leray-Schauder fixed-point theorem based on the infinite-dimensional Borsuk-Ulam-type antipode construction is proposed. A new nonstandard proof of the classical LeraySchauder fixed-point theorem and a study of the solution manifold of a nonlinear Hamilton-Jacobi-type equation are presented.
A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Båcklund transformation. The connection of this hierarchy with Lax-integrable twometrizable systems is studied.
A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Båcklund transformation. The connection of this hierarchy with Lax-integrable twometrizable systems is studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.