Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ∼60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.
Hole-doped high-temperature cuprate superconductors below optimum doping have electronlike Fermi surfaces occupying a small fraction of the Brillouin zone. There is strong evidence that this is linked to charge density wave (CDW) order, which reconstructs the large holelike Fermi surfaces predicted by band structure calculations. Recent experiments have revealed the structure of the two CDW components in the benchmark bilayer material YBa 2 Cu 3 O 7-x in high field where quantum oscillation (QO) measurements are performed. We have combined these results with a tight-binding description of the bands in a single bilayer to give a minimal model revealing the essential physics of the situation. Here we show that this approach, combined with the effects of spin-orbit interactions and the pseudogap, gives a good qualitative description of the multiple frequencies seen in the QO observations in this material. Magnetic breakdown through weak CDW splitting of the bands will lead to a field dependence of the QO spectrum and to the observed fourfold symmetry of the results in tilted fields.
We attempt to solve the magnetic structure of the gadolinium analogue of 'spin-ice', using a mixture of experimental and theoretical assumptions. The eventual predictions are essentially consistent with both the Mössbauer and neutron measurements but are unrelated to previous proposals. We find two possible distinct states, one of which is coplanar and the other is fully three-dimensional. We predict that close to the initial transition the preferred state is coplanar but that at the lowest temperature the ground-state becomes fully three-dimensional. Unfortunately the energetics are consequently complicated. There is a dominant nearest-neighbour Heisenberg interaction but then a compromise solution for lifting the final degeneracy resulting from a competition between longer-range Heisenberg interactions and direct dipolar interactions on similar energy scales.
Abstract-Flux pinning sites are most effective if their size is comparable to the superconducting coherence length, which is on the nano-meter scale for RE-Ba-Cu-O superconductors [RE = rare earth element]. Introducing nano-phase inclusions directly into the bulk superconducting material has only been partially successful to date, however, due primarily to the absence of chemically stable phases that can co-exist with RE-Ba-Cu-O without suppressing its key superconducting properties. We have identified novel isostructural phases based on (RE) 2 Ba 4 CuMO y (where M = W, Zr, Nb, Ag and Bi) and have fabricated successfully superconducting bulk nano-composites with a high current carrying capability. The average size of the nano-inclusions is observed to vary from 20 nm to 300 nm depending on element M. An observed improvement in J c under low and high external magnetic fields at 77 K correlates directly with an increased density of nano-inclusions in the superconducting matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.