We have developed a novel method for monitoring the mitochondrial permeability transition in single intact hepatocytes during injury with t-butylhydroperoxide (t-BuOOH). Cultured hepatocytes were loaded with the fluorescence probes, calcein and tetramethylrhodamine methyl ester (TMRM). Depending on loading conditions, calcein labelled the cytosolic space exclusively and did not enter mitochondria or it stained both cytosol and mitochondria. TMRM labelled mitochondria as an indicator of mitochondrial polarization. Fluorescence of two probes was imaged simultaneously using laser-scanning confocal microscopy. During normal incubations, TMRM labelled mitochondria indefinitely (longer than 63 min), and calcein did not redistribute between cytosol and mitochondria. These findings indicate that the mitochondrial permeability transition pore ('megachannel') remained closed continuously. After addition of 100 ,M t-BuOOH, mitochondria filled quickly with calcein, indicating the onset of mitochondrial permeability transition.
The importance of ATP depletion and mitochondrial depolarization in the toxicity of cyanide, oligomycin, and carbonyl cyanide m-cholorophenylhydrazone (CCCP), an uncoupler, was evaluated in rat hepatocytes. Oligomycin, an inhibitor of the reversible mitochondrial ATP synthase (F1F0-adenosinetriphosphatase), caused dose-dependent cell killing with 0.1 microgram/ml being the minimum concentration causing the maximum cell killing. Oligomycin also caused rapid ATP depletion without causing mitochondrial depolarization. Fructose (20 mM), a potent glycolytic substrate in liver, protected completely against oligomycin toxicity. CCCP (5 microM) also caused rapid killing of hepatocytes. Fructose retarded cell death caused by CCCP but failed to prevent lethal cell injury. Although oligomycin (1.0 microgram/ml) was lethally toxic by itself, in the presence of fructose it protected completely against CCCP-induced cell killing. Cyanide (2.5 mM), an inhibitor of mitochondrial respiration, caused rapid cell killing that was reversed by fructose. CCCP completely blocked fructose protection against cyanide, causing mitochondrial depolarization and rapid ATP depletion. In the presence of fructose and cyanide, oligomycin protected cells against CCCP-induced ATP depletion and cell death but did not prevent mitochondrial depolarization. In every instance, cell killing was associated with ATP depletion, whereas protection against lethal cell injury was associated with preservation of ATP. In conclusion, protection by fructose against toxicity of cyanide, oligomycin, and CCCP was mediated by glycolytic ATP formation rather than by preservation of the mitochondrial membrane potential. These findings support the hypothesis that inhibition of cellular ATP formation is a crucial event in the progression of irreversible cell injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.