The layered chalcogenide Ta2NiSe5 has been proposed to host an excitonic condensate in its ground state, a phase that could offer a unique platform to study and manipulate many-body states at room temperature. However, identifying the dominant microscopic contribution to the observed spontaneous symmetry breaking remains challenging, perpetuating the debate over the ground state properties. Here, using broadband ultrafast spectroscopy we investigate the out-of-equilibrium dynamics of Ta2NiSe5 and demonstrate that the transient reflectivity in the near-infrared range is connected to the system’s low-energy physics. We track the status of the ordered phase using this optical signature, establishing that high-fluence photoexcitations can suppress this order. From the sub-50 fs quenching timescale and the behaviour of the photoinduced coherent phonon modes, we conclude that electronic correlations provide a decisive contribution to the excitonic order formation. Our results pave the way towards the ultrafast control of an exciton condensate at room temperature.
Development of accurate surface runoff estimation techniques from ungauged watersheds is relevant in Indian condition due to the non-availability of hydrologic gauging stations in majority of watersheds. Besides this, the high budgetary requirements for installation of gauging stations are another limiting factor in India, which leads to the use of surface runoff estimation techniques for ungauged watersheds. Natural Resources Conservation Services Curve Number (NRCS-CN) method is one of the most widely used methods for quick and accurate estimation of surface runoff from ungauged watershed. Also, the coupling of NRCS-CN techniques with the advanced Geographic Information System (GIS) capabilities automates the process of runoff prediction in timely and efficient manner. Keeping view of this, a GIS interface was developed using the in-built macro programming language, Visual Basic for Applications (VBA) of ArcGIS® tool to estimate the surface runoff by adopting NRCS-CN technique and its three modifications. The developed interface named as Interface for Surface Runoff Estimation using Curve Number techniques (ISRE-CN), was validated using the recorded data for the periods from 1993 to 2001 of a gauged watershed, Banha in the Upper Damodar Valley in Jharkhand, India. The observed runoff depths for different rainfall events in this study watershed was compared with the predicted values of NRCS-CN methods and its three modifications using statistical significance tests. It was revealed that using all the rainfall data for different AMC conditions, the modified CN I performed the best [R 2 (coefficient of determination)=0.92; E (model efficiency)=0.89) followed by modified CN III method (R 2 =0.88; E=0.87), while the modified CN II (R 2 =0.42; E=0.36) failed to predict accurately the surface runoff from Banha watershed. Moreover, under AMC based estimations, the modified CN I method also Water Resour Manage (performed best (R 2 =0.95; E=0.95) for AMC II condition, while the modified CN II performed the worst in all the AMC conditions. However, the developed Interface in ArcGIS® needs to be tested in other watershed systems for wider applicability of the modified CN methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.