Water avens (Geum rivale L.) is a common Rosaceae plant widely spread in Europe and North America. It is rich in biologically active natural products, some of which are promising as prospective pharmaceuticals. The extracts of water avens are well known for their triterpenoid metabolites and associated anti-inflammatory, antimicrobial and antioxidant activities. However, the polyphenolic profiles of G. rivale L. are still awaiting complete characterization. Accordingly, the contribution of its individual components to the antioxidant, antibacterial and neuroprotective activity of the extracts is still unknown. As this plant can be available on an industrial scale, a better knowledge of its properly-relevant constituents might give access to new highly-efficient pharmaceutical substances and functional products. Therefore, herein we comprehensively characterize the secondary metabolome of G. rivale by ESI-HR-MS, ESI-HR-MSn and NMR spectroscopy with a special emphasis on the polyphenolic composition of its aerial parts. Furthermore, a multilateral evaluation of the antioxidant, neuroprotective and antibacterial properties of the aqueous and ethyl acetate fractions of the total aqueous alcoholic extract as well as individual isolated polyphenols was accomplished. Altogether four phenolic acid derivatives (trigalloyl hexose, caffeoyl-hexoside malate, ellagic acid and ellagic acid pentoside), six flavonoids (three quercetin derivatives, kaempferol and three its derivatives and two isorhamnetin derivatives) and four tannins (HHDP-hexoside, proantocyanidin dimer, pedunculagin I and galloyl-bis-HHDP-hexose) were identified in this plant for the first time. The obtained aqueous and ethyl acetate fractions of the total extract as well as the isolated individual compounds showed pronounced antioxidant activity. In addition, a pronounced antibacterial activity against several strains was proved for the studied fractions (for ethyl acetate fraction the highest activity against E. coli АТСС 25922 and S. aureus strains ATCC 27853 and SG-511 (MIC 15.6 μg/mL) was observed; for aqueous fraction—against Staphylococcus aureus SG-511 (MIC 31.2 μg/mL)). However, the anti-neurodegenerative (neuroprotective) properties could not be found with the employed methods. However, the antibacterial activity of the fractions could not be associated with any of the isolated individual major phenolics (excepting 3-O-methylellagic acid). Thus, the aerial parts of water avens represent a promising source of polyphenolic compounds with antioxidant activity and therefrom derived human health benefits, although the single constituents isolated so far lack a dominant selectively bioactive constituent in the bioassays performed.
The roots of licorice (Glycyrrhiza glabra L.) have been widely used in traditional and officinal medicines for the treatment of different diseases. Natural deep eutectic solvents (NADES) have become popular for the extraction of active principles from medicinal plants. However, the ability of NADES to co-extract trace elements during the isolation of target active compounds is rarely investigated. The aim of this study was to analyze the content of trace elements in acid-based NADES extracts from the roots of G. glabra and the health risks associated with them. In this study, we have tested for the first time the ability of several acid-based NADES to co-extract glycyrrhizic acid (GA) and trace elements from the roots of G. glabra. GA has been identified as the dominant phytochemical in G. glabra NADES extracts (0.145–0.495 mg/g). Due to the close pKa of lactic acid and GA, the yield of GA in lactic acid-based NADES was higher in comparison with other tested NADES. The yield of GA in NADES3-NADES5 was statistically significant and surpassed the yield of GA in water. The recovery of all elements (except Li) by all tested NADES was low (less than 6%). According to an ANOVA test, the hydrogen bond donor type plays a decisive role in the extraction of elements. A strong positive correlation between the recovery of GA and MPI was noted. The metal pollution index, hazard quotient, hazard index, and chronic daily intake were calculated and suggest that all tested NADES extracts of G. glabra roots were nontoxic and possess no health risk for both ingestion and topical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.