A numerical scheme based on the distributed Lagrange multiplier method (DLM) is used to study the motion of nano-sized particles of dielectric suspensions subjected to uniform and nonuniform electric fields. Particles are subjected to both electrostatic and hydrodynamic forces, as well as Brownian motion. The results of the simulations presented in this paper show that uniform electric fields the evolution of the particle structures depends on the ratio of electrostatic particle-particle interactions and Brownian forces. When this ratio is of the order of 100 or greater, particles form stable chains and columns, whereas when it is of the order of 10 or smaller the particle distribution is random. For the nonuniform electric field cases considered in this paper, the relative magnitude of Brownian forces is in the range such that it does not influence the eventual collection of particles by dielectrophoresis and the particular locations where the particles are collected. However, Brownian motion is observed to influence the transient particle trajectories. The deviation of the particle trajectories compared to those determined by the electrostatic and hydrodynamic forces alone is characterized by the ratio of Brownian and dielectrophoretic forces.
The fundamentals of nanoparticle detachment at the sub-100nm level using pulsed laser-induced plasma (LIP) shock waves are investigated in the current study. Two detachment mechanisms based on rolling resistance moment and rolling by resonant frequency excitation are identified as possible detachment mechanisms for nanoparticles. The gas molecule-nanoparticle interactions are studied using the direct simulation Monte Carlo method to gain knowledge about the nature of the detachment forces and moments acting on a nanoparticle in the LIP shock wave field. The discrete nature of the gas molecules colliding with the particle on the sub-100 nm length scale is linked to the stochastic transient moment experienced by the particle. Both experimental and computational findings of the current study indicate that nanoparticle detachment at the sub-100 nm level is possible by LIP shock waves.
A numerical scheme based on the distributed Lagrange multiplier method (DLM) is used to study the motion of nano sized particles of dielectric suspensions subjected to uniform and nonuniform electric fields. Particles are subjected to both electrostatic and hydrodynamic forces, as well as Brownian motion. The results of the simulations presented in this paper show that in the case of uniform electric fields the evolution of the particle structures depends on the ratio of electrostatic particle-particle interactions and Brownian forces. For solids fraction of the order 0.01, when this ratio is of the order of a hundred or more particles form stable chains and columns whereas when this ratio is of the order ten the particles are distributed in a random manner. For the non uniform electric field cases considered in this paper, the relative magnitude of Brownian forces is in the range such that it does not influence the eventual collection of particles by dielectrophoresis and the particular locations where the particles are collected. However, Brownian motion is observed to influence the transient particle trajectories. The deviation of the particle trajectories compared to those determined by the electrostatic and hydrodynamic forces alone is characterized by the ratio of Brownian and dielectrophoretic forces.
Nano-scale substrate cleanliness is an essential requirement in variety of nanotechnology applications. Currently, the detachment and removal of sub-100nm particles is of a particular interest and challenge in semiconductor manufacture, lithography, and nanotechnology. The proposed particle removal technique based on pressure shock waves generated by a laser induced plasma (LIP) core is of interest in various nano/micro fabrication applications in which the minimum feature size has been reducing rapidly. Any removal technique adopted in a fabrication process must be on the same shrinking feature reduction curve since, for device reliability, the minimum tolerable foreign particle size on a substrate depends on the minimum feature size on a nano/micro-system or device. In recent years, we have demonstrated that nanoparticles can be detached and removed from substrates using LIP shock wavefronts. While we have experimentally established the effectiveness of the LIP technique for removing nanoparticles in the sub-100nm range, the removal mechanisms were not well-understood. In the current work, we introduce a set of novel removal mechanisms based on moment resistance of the particle-substrate bond and discuss their effectiveness and applicability in laser-induced plasma shock nanoparticle removal. To gain better understanding for the detachment mechanisms, the resultant force and rolling moment induced on the nanoparticle by the LIP shockwave front need to be determined. Since, for sub-100nm nanoparticles, the Knudsen number Kn exceeds 0.1, the applicability of the Navier-Stokes equations for the gas motion becomes questionable as the continuum assumption for the medium breaks down due to the invalidity of the transport terms in these equations. Detachment and detachment mechanisms of nanoparticles from flat surfaces subjected to shockwaves are investigated by employing molecular gas dynamic simulations using the direct simulation Monte Carlo method and experimental transient pressure data. Two new mechanisms for nanoparticle detachment based on rolling moment resistance of the adhesion bond and the elastic restitution effect are introduced. As a result of present simulations, it is computationally demonstrated that the pulsed laser-induced shockwaves can generate sufficient rolling moments to detach sub-100nm particles and initiate removal. The transient moment exerted on a 60nm polystyrene latex (PSL) particle on a silicon substrate are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.