It is considered that 1 in 10 adults worldwide have diabetes. Diabetic foot ulcers are some of the most common complications of diabetes, and they are associated with a high risk of lower-limb amputation and, as a result, reduced life expectancy. Timely detection and periodic ulcer monitoring can considerably decrease amputation rates. Recent research has demonstrated that computer vision can be used to identify foot ulcers and perform non-contact telemetry by using ulcer and tissue area segmentation. However, the applications are limited to controlled lighting conditions, and expert knowledge is required for dataset annotation. This paper reviews the latest publications on the use of artificial intelligence for ulcer area detection and segmentation. The PRISMA methodology was used to search for and select articles, and the selected articles were reviewed to collect quantitative and qualitative data. Qualitative data were used to describe the methodologies used in individual studies, while quantitative data were used for generalization in terms of dataset preparation and feature extraction. Publicly available datasets were accounted for, and methods for preprocessing, augmentation, and feature extraction were evaluated. It was concluded that public datasets can be used to form a bigger, more diverse datasets, and the prospects of wider image preprocessing and the adoption of augmentation require further research.
In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from output patches. The proposed segmentation method is based on an ensemble of three individual deep networks, such as U-Net, ResNet34-UNet and UNet++. The performance evaluation is based on the calculation of the Dice score and IoU values. The ensemble-based model achieved higher Dice score (0.95) and IoU (0.91) values compared to other network architectures. The proposed ensemble-based model demonstrates the high practical application potential for detection of early-stage diabetic retinopathy in color fundus images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.