Biodiversity is an essential attribute of sustainable agroecosystems. Diverse arthropod communities deliver multiple ecosystem services, such as biological control, which are the core of integrated pest management programs. The molecular analysis of arthropod diets has emerged as a new tool to monitor and help predict the outcomes of management on the functioning of arthropod communities. Here, we briefly review the recent molecular analysis of predators and parasitoids in agricultural environments. We focus on the developments of molecular gut content analysis (MGCA) implemented to unravel the function of community members, and their roles in biological control. We examine the agricultural systems in which this tool has been applied, and at what ecological scales. Additionally, we review the use of MGCA to uncover vertebrate roles in pest management, which commonly receives less attention. Applying MGCA to understand agricultural food webs is likely to provide an indicator of how management strategies either improve food web properties (i.e., enhanced biological control), or adversely impact them.
Coenosia attenuata is a member of the tigrina-group of Coenosia (sensu Hennig 1964) and is a capable generalist predator in its larval and adult stages. C. attenuata is common in greenhouses worldwide, however, there are few documented cases of its presence in the wild. Here, we estimated C. attenuata presence in the southeastern USA peach orchards using pan traps. Over two years, a total of 717 specimens were collected from both commercially managed and fungicide-only managed peach orchards. C. attenuata is a known biological control agent in artificial greenhouse settings, but its impact on pest species in the wild is still unknown. For the first time in North America, we document an established wild population of C. attenuata, provide an overview of basic identification, and review potential benefits for biological control.
Despite the importance of bumble bees (genus Bombus Latreille) for their services to natural and agricultural environments, we know little about the relationship between grassland management practices and bumble bee conservation. Prescribed fire is a common grassland maintenance tool, including in areas where endangered and threatened bumble bees are present. Thus, knowledge of the effects of prescribed fire on bumble bees is essential for designing management schemes that protect and bolster their populations. Using nonlethal surveys to record bumble bee species richness, abundance, and community composition, we evaluated the effects of spring controlled burns on summer bumble bee gynes and workers across five sites in southern Wisconsin. In addition, we explored the effects of fire on floral resources by measuring floral genus richness, abundance, ground cover, and proportion of transects containing blooming flowers in adjacent burned and unburned parcels. Prescribed fire had no measurable effects on bumble bee gyne or worker community composition, species richness, or abundance. However, consistent with previous studies prescribed fire increased floral genus richness and ground cover. The disconnect between bumble bee and floral responses to fire highlights some opportunities for improving our understanding of fire’s effects on bumble bee diapause, nest site choice, and foraging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.