The ancient Greek myth of Tityus is related to liver regeneration in the same way as the well known myth of Prometheus is. Depictions of the punishment of Prometheus are frequently used by lecturers on liver regeneration; however, Tityus remains unknown despite the fact that he received the same punishment and his myth could also be used as a paradigm for the organ's extraordinary ability to regenerate. Nevertheless, there is no convincing evidence that ancient Greeks had any specific knowledge about liver regeneration, a concept introduced in the early 19th century. We describe and analyze the myth of Tityus and compare it to the myth of Prometheus. We also explore artistic and literary links and summarize recent scientific data on the mechanisms of liver regeneration. Finally, we highlight links of the legend of Tityus with other sciences.
Background/Aims: The liver has a remarkable capacity to regenerate after injury or resection. The aim of the current review is to outline the morphological changes at the cellular level and the intralobular differences during the regenerative response after partial hepatectomy. Methods: Relevant studies were reviewed using the Medline database. Results: At 24 h after partial hepatectomy, many alterations between the periportal and pericentral regions of the hepatic lobule occur, which coincide with the peak of hepatocellular proliferation in the periportal areas. Questions unanswered involve the precise role of Kupffer cells and whether the regenerative process is characterized by a net increase in the number of lobules or by an increase in the size of the existing lobules. Conclusions: Liver regeneration has been studied for many years, but further research is essential, since in-depth knowledge of the mechanisms that govern the regenerative process may expand the treatment options in patients with hepatic disease.
BackgroundWe examined the intrinsic hepatic innervation after partial hepatectomy (PH) in rats and the presence and pattern of neural sprouting in regenerating liver.MethodsMale Wistar rats (age 9–13 weeks-w, weight 204-356 g), were submitted to two-thirds PH. Rats were sacrificed at postoperative days (d) 1, 3, 5, 7, at 2 and 4 w, and at 3 and 6 months (m) (6–7 animals/group, control group n = 4). Immunohistochemistry for the pan-neural marker protein gene product 9.5 (PGP9.5) and growth-associated protein 43 (GAP-43), a marker of regenerating nerve axons, was performed on tissue sections from the R1 lobe of the regenerating liver. Portal tracts (PTs) with immunoreactive fibers were counted in each section and computer-assisted morphometric analysis (Image Pro Plus) was used to measure nerve fiber density (number of immuno-positive nerve fibers/mm2 (40x)).ResultsImmunoreactivity for PGP9.5 was positive in all groups. The number of PGP9.5 (+) nerve fibers decreased from 0.32 +/− 0.12 (control group) to 0.18 +/− 0.09 (1d post-PH group), and gradually increased reaching pre-PH levels at 6 m (0.3 +/− 0.01). In contrast, immunoreactivity for GAP-43 was observed at 5d post-PH, and GAP-43 (+) PTs percentage increased thereafter with a peak at 3 m post-PH. GAP-43 (+) nerve fiber density increased gradually from 5d (0.05 +/− 0.06) with a peak at 3 m post-PH (0.21 +/− 0.027). At 6 m post-PH, immunoreactivity for GAP-43 was not detectable.ConclusionsFollowing PH in rats: 1) nerve fiber density in portal tracts decreases temporarily, and 2) neural sprouting in the regenerating liver lobes starts at 5d, reaches peak levels at 3 m and disappears at 6 m post-PH, indicating that the increase in hepatic mass after PH provides an adequate stimulus for the sprouting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.