We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a FLRW metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. The case for both spatially flat and non flat are studied first in the presence of only the scalar field and subsequently with the addition of non interacting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature. *
We start from a static, spherically symmetric space-time in the presence of an electrostatic field and construct the mini-superspace Lagrangian that reproduces the well known Reissner -Nordström solution. We identify the classical integrals of motion that are to be mapped to quantum observables and which are associated with the mass and charge. Their eigenvalue equations are used as supplementary conditions to the Wheeler-DeWitt equation and a link is provided between the existence of an horizon and to whether the spectrum of the observables is fully discrete or not. For each case we provide an orthonormal basis of states as emerges through the process of canonical quantization. *
We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor F µν ; the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor T µν , suffice to reduce the general F µν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordström one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.