Balance theory proposed by Heider for the first time modeled triplet interaction in a signed network, stating that relationships between two people, friendship or enmity, is dependent on a third person. The Hamiltonian of this model has an implicit assumption that all triads are independent, meaning that state of each triad, being balanced or imbalanced, is ineffective to others. This independence forces the network to have completely balanced final states. However, there exists evidence indicating that real networks are partially balanced raising the question of what is the mechanism preventing the system to be perfectly balanced. Our suggestion is to consider a quartic interaction which dissolves the triad's independence. We use mean field method to study thermal behavior of such systems where the temperature is a parameter that allows the stochastic behavior of agents. We show that under a certain temperature, the symmetry between balanced and imbalanced triads will spontaneously break and we have a discrete phase transition. As consequence stability arises where either similar balanced or imbalanced triads dominate, hence the system obtains two new imbalanced stable states. In this model, the critical temperature depends on the second power of the number of nodes, which was a linear dependence in thermal balance theory. Our simulations are in good agreement with the results obtained by the mean field method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.