Elastic electron-proton scattering (e−p) and the spectroscopy of hydrogen atoms are the two traditional methods used to determine the proton charge radius (r p). About a decade ago, a new method using muonic hydrogen (µH) atoms 1 found a significant discrepancy with the compilation of all previous results 2 , creating the "proton radius puzzle". Despite intensive worldwide experimental and theoretical efforts, the "puzzle" remains unresolved. In fact, a new discrepancy was reported between the two most recent spectroscopic measurements on ordinary hydrogen 3, 4. Here, we report on the PRad experiment, the first high-precision e − p experiment since the emergence of the "puzzle". For the first time, a magnetic-spectrometerfree method was employed along with a windowless hydrogen gas target, which overcame several limitations of previous e − p experiments and reached unprecedented small angles.
The 2015 Gorkha earthquake produced displacement on the lower half of a shallow decollement that extends 100 km south, and upward from beneath the High Himalaya and Kathmandu to where it breaks the surface to form the trace of the Himalayan Frontal Thrust (HFT), leaving unruptured the shallowest ~50 km of the decollement. To address the potential of future earthquakes along this section of the HFT, we examine structural, stratigraphic, and radiocarbon relationships in exposures produced by emplacement of trenches across the HFT where it has produced scarps in young alluvium at the mouths of major rivers at Tribeni and Bagmati. The Bagmati site is located south of Kathmandu and directly up dip from the Gorkha rupture, whereas the Tribeni site is located ~200 km to the west and outside the up dip projection of the Gorkha earthquake rupture plane. The most recent rupture at Tribeni occurred 1221-1262 AD to produce a scarp of ~7 m vertical separation. Vertical separation across the scarp at Bagmati registers ~10 m, possibly greater, and formed between 1031-1321 AD. The temporal constraints and large displacements allow the interpretation that the two sites separated by ~200 km each ruptured simultaneously, possibly during 1255 AD, the year of a historically reported earthquake that produced damage in Kathmandu. In light of geodetic data that show ~20 mm/yr of crustal shortening is occurring across the Himalayan front, the sum of observations is interpreted to suggest that the HFT extending from Tribeni to Bagmati may rupture simultaneously, that the next great earthquake near Kathmandu may rupture an area significantly greater than the section of HFT up dip from the Gorkha earthquake, and that it is prudent to consider that the HFT near Kathmandu is well along in a strain accumulation cycle prior to a great thrust earthquake, most likely much greater than occurred in 2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.