Several peptides in clinical use are derived from non-ribosomal peptide synthetases (NRPS). In these systems multiple NRPS subunits interact with each other in a specific linear order mediated by specific docking domains (DDs), whose structures are not known yet, to synthesize well-defined peptide products. In contrast to classical NRPSs, single-module NRPS subunits responsible for the generation of rhabdopeptide/xenortide-like peptides (RXPs) can act in different order depending on subunit stoichiometry thereby producing peptide libraries. To define the basis for their unusual interaction patterns, we determine the structures of all N-terminal DDs (NDDs) as well as of an NDD-CDD complex and characterize all putative DD interactions thermodynamically for such a system. Key amino acid residues for DD interactions are identified that upon their exchange change the DD affinity and result in predictable changes in peptide production. Recognition rules for DD interactions are identified that also operate in other megasynthase complexes.
S-adenosylmethionine (SAM) is a central metabolite since it is used as a methyl group donor in many different biochemical reactions. Many bacteria control intracellular SAM concentrations using riboswitch-based mechanisms. A number of structurally different riboswitch families specifically bind to SAM and mainly regulate the transcription or the translation of SAM-biosynthetic enzymes. In addition, a highly specific riboswitch class recognizes S-adenosylhomocysteine (SAH)—the product of SAM-dependent methyl group transfer reactions—and regulates enzymes responsible for SAH hydrolysis. High-resolution structures are available for many of these riboswitch classes and illustrate how they discriminate between the two structurally similar ligands SAM and SAH. The so-called SAM/SAH riboswitch class binds both ligands with similar affinities and is structurally not yet characterized. Here, we present a high-resolution nuclear magnetic resonance structure of a member of the SAM/SAH-riboswitch class in complex with SAH. Ligand binding induces pseudoknot formation and sequestration of the ribosome binding site. Thus, the SAM/SAH-riboswitches are translational ‘OFF’-switches. Our results establish a structural basis for the unusual bispecificity of this riboswitch class. In conjunction with genomic data our structure suggests that the SAM/SAH-riboswitches might be an evolutionary late invention and not a remnant of a primordial RNA-world as suggested for other riboswitches.
RNA tertiary structure motifs are stabilized by a wide variety of hydrogen-bonding interactions. Protonated A and C nucleotides are normally not considered to be suitable building blocks for such motifs since their pK values are far from physiological pH. Here, we report the NMR solution structure of an in vitro selected GTP-binding RNA aptamer bound to GTP with an intricate tertiary structure. It contains a novel kind of base quartet stabilized by a protonated A residue. Owing to its unique structural environment in the base quartet, the pK value for the protonation of this A residue in the complex is shifted by more than 5 pH units compared to the pK for A nucleotides in single-stranded RNA. This is the largest pK shift for an A residue in structured nucleic acids reported so far, and similar in size to the largest pK shifts observed for amino acid side chains in proteins. Both RNA pre-folding and ligand binding contribute to the pK shift.
Trypanosomal and leishmanial infections claim tens of thousands of lives eachy ear.T he metabolism of these unicellular eukaryotic parasites differs from the human host and their enzymes thus constitute promising drug targets. Tryparedoxin (Tpx) from Trypanosoma brucei is the essential oxidoreductase in the parasitesh ydroperoxide-clearance cascade.I nvitro and in vivo functional assays show that as mall, selective inhibitor efficiently inhibits Tpx. With X-rayc rystallography,S AXS,a nalytical SEC,S EC-MALS,M Ds imulations,I TC,a nd NMR spectroscopy, we show howc ovalent binding of this monofunctional inhibitor leads to Tpx dimerization. Intra-and intermolecular inhibitor-inhibitor,p rotein-protein, and inhibitor-protein interactions stabilizet he dimer.T he behavior of this efficient antitrypanosomal molecule thus constitutes an exquisite example of chemically induced dimerization with as mall, monovalent ligand that can be exploited for future drug design.
Many naturally occurring or artificially created RNAs are capable of binding to guanine or guanine derivatives with high affinity and selectivity. They bind their ligands using very different recognition modes involving a diverse set of hydrogen bonding and stacking interactions. Apparently, the potential structural diversity for guanine, guanosine, and guanine nucleotide binding motifs is far from being fully explored. Szostak and coworkers have derived a large set of different GTP-binding aptamer families differing widely in sequence, secondary structure, and ligand specificity. The so-called class V-GTP aptamer from this set binds GTP with very high affinity and has a complex secondary structure. Here we use solution NMR spectroscopy to demonstrate that the class V aptamer binds GTP through the formation of an intermolecular two-layered G-quadruplex structure that directly incorporates the ligand and folds only upon ligand addition. Ligand binding and G-quadruplex formation depend strongly on the identity of monovalent cations present with a clear preference for potassium ions. GTP binding through direct insertion into an intermolecular G-quadruplex is a previously unobserved structural variation for ligand-binding RNA motifs and rationalizes the previously observed specificity pattern of the class V aptamer for GTP analogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.