The latest 6G improvements secured autonomous driving's realism in Intelligent Autonomous Transport Systems (IATS). Despite the IATS's benefits, security remains a significant challenge. Blockchain technology has grown in popularity as a means of implementing safe, dependable, and decentralised independent IATS systems, allowing for more utilisation of legacy IATS infrastructures and resources, which is especially advantageous for crowdsourcing technologies. Blockchain technology can be used to address security concerns in the IATS and to aid in logistics development. In light of the inadequacy of reliance and inattention to rights created by centralised and conventional logistics systems, this paper discusses the creation of a blockchain-based IATS powered by deep learning for secure cargo and vehicle matching (BDL-IATS). The BDL-IATS approach utilises Ethereum as the primary blockchain for storing private data such as order and shipment details. Additionally, the deep belief network (DBN) model is used to select suitable vehicles and goods for transportation. Additionally, the chaotic krill herd technique is used to tune the DBN model's hyperparameters. The performance of the BDL-IATS technique is validated, and the findings are inspected under a variety of conditions. The simulation findings indicated that the BDL-IATS strategy outperformed recent state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.