Multi-electrode arrays (MEAs) are a widely used tool for recording neuronal activity both in vitro/ex vivo and in vivo experiments. In the last decade, researchers have increasingly used MEAs on rodents in vivo. To increase the availability and usability of MEAs, we have created an open-source wireless electrophysiological complex. The complex is scalable, recording the activity of neurons in the brain of rodents during their behavior. Schematic diagrams and a list of necessary components for the fabrication of a wireless electrophysiological complex, consisting of a base charging station and wireless wearable modules, are presented.
In this work, we demonstrate the high efficiency of optical emission spectroscopy to estimate the etching profile of silicon structures in SF6/C4F8/O2 plasma. The etching profile is evaluated as a ratio of the emission intensity of the oxygen line (778.1 nm) to the fluorine lines (685.8 nm and 703.9 nm). It was found that for the creation of directional structures with line sizes from 13 to 100 μm and aspect ratio from ≈ 0.15 to ≈ 5 the optimal intensities ratio is in the range of 2–6, and for structures from 400 to 4000 μm with aspect ratio from ≈ 0.03 to ≈ 0.37 it is in the range 1.5–2. Moreover, the influence of the process parameters on the etching rate of silicon, the etching rate of aluminum, the inclination angle of the profile wall of the etched window, the selectivity of silicon etching with respect to aluminum, and the influence on the overetching (Bowing effect) of the structure was investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.