An imaginary resistor (Z) based electronic dimer is used to describe the gyroscopic and resistive coupled two-level systems in quaternionic space. We successfully used the quaternionic coefficients to characterize the different classes of non-Hermitian systems: the pseudo-Hermitian and anti-Hermitian, both having exceptional points (EPs) separating the exact and the broken phases. Remarkably, the EPs conical dynamic is fully described to follow a hyperbolic/parabolic shape in the case of parity-time symmetry (PTS)/anti-PTS, respectively. Interestingly, our results demonstrated that the gyroscopic coupling mechanism allows identical non-dissipative but nonoscillatory systems with negative capacitor to exhibit PTS-like behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.