The powder metallurgical route was utilised to obtain the Al-5Si-4Cu-4Mg (alloy 544) and Al-3Si-2Cu-2Mg (alloy 322) foams. Various steps such as centrifugal atomisation, mixing alloy powder and foaming agent (1 wt-%TiH 2 ), cold compaction of mixture, hot extrusion and foaming in a preheated furnace were performed. Foaming behaviour of the alloys was investigated by digital microscopy, image analysis, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) mapping in this study. It was found that alloy 544 takes a shorter period of time to initiate pore nucleation than alloy 322. Alloy 544 had a higher pore growth rate than alloy 322 at the same pre-set furnace temperature. In both alloys, crack-like pore nucleation occurred between aluminium alloy powders elongated in a direction parallel to the extrusion direction. Both alloys showed the same foaming sequence of crack-like pore nucleation, spherical pore growth, coalescence of neighbouring pores and collapse of pores adjacent to the free surface of specimen. The time required to start pore nucleation decreased with the increase of foaming temperature. The cell walls of both alloys consisted of a-Al phase and eutectic phase. MST/6235
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.