The wear behaviour of hot pressed AA 2618 aluminium alloy matrix composites reinforced through nano Si3N4 elements (1 percent and 2 percent) has been investigated in this paper. Temperatures of 50°C, 150°C, and 250°C were used to examine the tribological characteristics of the models under a range of loads and pressures. The best wear performance was found in AA 2618/2wt percent Si3N4. Under a load of 30 N and temperature of 250°C, it was discovered that Si3N4-enriched AA 2618 alloy was 35.7% more wear-resistant than unreinforced AA 2618 alloy. Metal flow and plain delamination were the most common wear mechanisms at higher temperatures. Delamination is the most common wear mechanism at temperatures between 50 and 250 degrees Celsius. In the analysis of variance, the wear rate was influenced by temperature, load, and the presence of Si3N4 by 47.2%. In order to predict the wear rate, regression equations (linear and nonlinear) were developed by Taguchi method. Using a high determination coefficient, the nonlinear regression was the preeminent success rate (92.8 percent).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.