Demonstrating improved confinement of energetic ions is one of the key goals of the Wendelstein 7-X (W7-X) stellarator. In the past campaigns, measuring confined fast ions has proven to be challenging. Future deuterium campaigns would open up the option of using fusion-produced neutrons to indirectly observe confined fast ions. There are two neutron populations: 2.45 MeV neutrons from thermonuclear and beam-target fusion, and 14.1 MeV neutrons from DT reactions between tritium fusion products and bulk deuterium. The 14.1 MeV neutron signal can be measured using a scintillating fiber neutron detector, whereas the overall neutron rate is monitored by common radiation safety detectors, for instance fission chambers. The fusion rates are dependent on the slowing-down distribution of the deuterium and tritium ions, which in turn depend on the magnetic configuration via fast ion orbits. In this work, we investigate the effect of magnetic configuration on neutron production rates in W7-X. The neutral beam injection, beam and triton slowing-down distributions, and the fusion reactivity are simulated with the ASCOT suite of codes. The results indicate that the magnetic configuration has only a small effect on the production of 2.45 MeV neutrons from DD fusion and, particularly, on the 14.1 MeV neutron production rates. Despite triton losses of up to 50 %, the amount of 14.1 MeV neutrons produced might be sufficient for a time-resolved detection using a scintillating fiber detector, although only in high-performance discharges.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Wendelstein 7-X (W7-X) optimized stellarator fusion experiment, which went into operation in 2015, has been operating since 2017 with an un-cooled modular graphite divertor. This allowed first divertor physics studies to be performed at pulse energies up to 80 MJ, as opposed to 4 MJ in the first operation phase, where five inboard limiters were installed instead of a divertor. This, and a number of other upgrades to the device capabilities, allowed extension into regimes of higher plasma density, heating power, and performance overall, e.g. setting a new stellarator world record triple product. The paper focuses on the first physics studies of how the island divertor works. The plasma heat loads arrive to a very high degree on the divertor plates, with only minor heat loads seen on other components, in particular baffle structures built in to aid neutral compression. The strike line shapes and locations change significantly from one magnetic configuration to another, in very much the same way that codes had predicted they would. Strike-line widths are as large as 10 cm, and the wetted areas also large, up to about 1.5 m 2 , which bodes well for future operation phases. Peak local heat loads onto the divertor were in general benign and project below the 10 MW/m 2 limit of the future water-cooled divertor when operated with 10 MW of heating power, with the exception of low-density attached operation in the high-iota Submitted to Nuclear Fusion configuration. The most notable result was the complete (in all 10 divertor units) heat-flux detachment obtained at highdensity operation in hydrogen.
Diverted plasmas in the stellarator W7-X are investigated using a hopping Poloidal Correlation Reflectometer and a set of Langmuir probes to investigate the plasma edge and the scrape of layer at two different toroidal positions and poloidal cross sections, respectively. The properties of the scrape off layer are studied as function of two magnetic configurations and as function of plasma parameters. The experimentally determined radial position of the inversion point of the radial electric field is compared with calculations. For certain magnetic configurations a remnant island in the scrape of layer is observed and studied as function of the plasma current. Different methods to determine the radial electric field are applied which allow to estimate the phase velocity of the turbulence. The measured phase velocity is small and shows some evidence for the existence of resistive ballooning modes in the scrape of layer. Spectrum decomposition of coherence spectra is applied for a radial localization of modes and to determine their properties. An estimate of the radial correlation length of the broad band turbulence in the vicinity of the last closed flux surface is calculated from the decrease of broad band turbulence amplitude as obtained from the coherence spectra. The obtained radial correlation length is found to be λ r ≈ 15 mm
The paper presents experimental observations and simulations for the effects of toroidal plasma current on divertor power depositions on W7-X. With increasing toroidal current accompanying changes in the island geometry result in a sweep of the strike line and a redistribution of the heat flux footprints. Good agreement between experiments, which partly used electron cyclotron current drive to generate an additional toroidal current contribution, and modelling using field line tracing in vacuum magnetic fields including an ad-hoc toroidal current on the magnetic axis is found for both standard and low-iota magnetic configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.