Abstract-We present a theoretical simulation of the turn-on dynamics of InAs/GaAs quantum dot semiconductor lasers driven by electrical current pulses. Our approach goes beyond standard phenomenological rate equations. It contains microscopically calculated Coulomb scattering rates, which describe Auger transitions between quantum dots and the wetting layer. In agreement with the experimental results, we predict a strong damping of relaxation oscillations on a nanosecond time scale. We find a complex dependence of the Coulomb scattering rates on the wetting layer electron and hole densities, and we show their crucial importance for the understanding of the turn-on dynamics of quantum dot lasers.Index Terms-Coulomb scattering rates, quantum dot (QD) lasers, relaxation oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.