We present an experimental technique along with the method of data analysis to give nondegenerate two-photon absorption (2PA) spectra. We use a femtosecond pump pulse and a white-light continuum (WLC) probe to rapidly generate the 2PA spectra of a variety of materials. In order to analyze data taken with this method, the spectral and temporal characteristics of the WLC must be known, along with the linear dispersion of the sample. This allows determination of the temporal walk-off of the pump and probe pulses as a function of frequency caused by group-velocity mismatch. Data correction can then be performed to obtain the nonlinear losses. We derive an analytical formula for the normalized nonlinear transmittance that is valid under quite general experimental parameters. We verify this on ZnS and use it for the determination of 2PA spectra of some organic compounds in solution. We also compare some of the data on organics with two-photon fluorescence data and find good agreement.
We propose a method of optical data storage that exploits the small dimensions of metallic nano-particles and/or nano-structures to achieve high storage densities. The resonant behavior of these particles (both individually and in small clusters) in the presence of ultraviolet, visible, and near-infrared light may be used to retrieve pre-recorded information by far-field spectroscopic optical detection. In plasmonic data storage, a very short (approximately few femtoseconds) laser pulse is focused to a diffraction-limited spot over a small region of an optical disk containing metallic nano-structures. The digital data stored in each bit-cell, comprising multiple bits of information, modifies the spectrum of the incident light pulse. This spectrum is subsequently detected, upon reflection/transmission, with the aid of an optical spectrum analyzer. We present theoretical as well as preliminary experimental results that confirm the potential of plasmonic nano-structures for high-density optical data storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.