Recent research in plasma biology proved that atmospheric pressure plasma jets (APPJs) have a biocidal effect, making them a promising alternative to traditional antimicapability of the APPJs, the streamer propagation, and the chemistry involved. The aim of this study is to investigate experimentally the effect of the target conductivity on the plasma characteristics: plasma jet propagation and reactive species production. The results show that the tions depend on the conductivity of the target. The results also demonstrate that the generation This study shows that the assessment of RONS generated by APPJs should be performed as close as possible to the real applications conditions.
This paper describes the conception of a high level, compact, scalable, and long autonomy perception and localization system for autonomous driving applications. Our benchmark is composed of a high resolution lidar (128 channels), a stereo global shutter camera, an inertial navigation system, a time server, and an embedded computer. In addition, in order to acquire data and build multi-modal datasets, this system embeds two perception algorithms (RBNN detection, DCNN detection) and one localization algorithm (lidar-based localization) to provide real-time advanced information such as object detection and localization in challenging environments (lack of GPS). In order to train and evaluate the perception algorithms, a dataset is built from 10.000 annotated lidar frames from various drives carried out under different weather conditions and different traffic and population densities. The performances of the three algorithms are competitive with the state-of-the-art. Moreover, the processing time of these algorithms are compatible with real-time autonomous driving applications. By providing directly accurate advanced outputs, this system might significantly facilitate the work of researchers and engineers with respect to planning and control modules. Thus, this study intends to contribute to democratizing access to autonomous vehicle research platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.