Age-associated increases in collagen cross-linking and accumulation of advanced glycosylation products are both accelerated by diabetes, suggesting that glucose-derived cross-link formation may contribute to the development of chronic diabetic complications as well as certain physical changes of aging. Aminoguanidine, a nucleophilic hydrazine compound, prevented both the formation of fluorescent advanced nonenzymatic glycosylation products and the formation of glucose-derived collagen cross-links in vitro. Aminoguanidine administration to rats was equally effective in preventing diabetes-induced formation of fluorescent advanced nonenzymatic glycosylation products and cross-linking of arterial wall connective tissue protein in vivo. The identification of aminoguanidine as an inhibitor of advanced nonenzymatic glycosylation product formation now makes possible precise experimental definition of the pathogenetic significance of this process and suggests a potential clinical role for aminoguanidine in the future treatment of chronic diabetic complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.