Recently, the field of predicting phenotypes of externally visible characteristics (EVCs) from DNA genotypes with the final aim of concentrating police investigations to find persons completely unknown to investigating authorities, also referred to as Forensic DNA Phenotyping (FDP), has started to become established in forensic biology. We previously developed and forensically validated the IrisPlex system for accurate prediction of blue and brown eye colour from DNA, and recently showed that all major hair colour categories are predictable from carefully selected DNA markers. Here, we introduce the newly developed HIrisPlex system, which is capable of simultaneously predicting both hair and eye colour from DNA. HIrisPlex consists of a single multiplex assay targeting 24 eye and hair colour predictive DNA variants including all 6 IrisPlex SNPs, as well as two prediction models, a newly developed model for hair colour categories and shade, and the previously developed IrisPlex model for eye colour. The HIrisPlex assay was designed to cope with low amounts of template DNA, as well as degraded DNA, and preliminary sensitivity testing revealed full DNA profiles down to 63pg input DNA. The power of the HIrisPlex system to predict hair colour was assessed in 1551 individuals from three different parts of Europe showing different hair colour frequencies. Using a 20% subset of individuals, while 80% were used for model building, the individual-based prediction accuracies employing a prediction-guided approach were 69.5% for blond, 78.5% for brown, 80% for red and 87.5% for black hair colour on average. Results from HIrisPlex analysis on worldwide DNA samples imply that HIrisPlex hair colour prediction is reliable independent of bio-geographic ancestry (similar to previous IrisPlex findings for eye colour). We furthermore demonstrate that it is possible to infer with a prediction accuracy of >86% if a brown-eyed, black-haired individual is of non-European (excluding regions nearby Europe) versus European (including nearby regions) bio-geographic origin solely from the strength of HIrisPlex eye and hair colour probabilities, which can provide extra intelligence for future forensic applications. The HIrisPlex system introduced here, including a single multiplex test assay, an interactive tool and prediction guide, and recommendations for reporting final outcomes, represents the first tool for simultaneously establishing categorical eye and hair colour of a person from DNA. The practical forensic application of the HIrisPlex system is expected to benefit cases where other avenues of investigation, including STR profiling, provide no leads on who the unknown crime scene sample donor or the unknown missing person might be.
Cutaneous malignant melanoma (CMM) is a malicious human skin cancer that primarily affects individuals with light pigmentation and heavy sun exposure, but also has a known familial association. Multiple genes and polymorphisms have been reported as low-penetrance susceptibility loci for CMM. Here, we examined 33 candidate polymorphisms located in 11 pigmentation genes and the vitamin D receptor gene (VDR) in a population of 130 cutaneous melanoma patients and 707 healthy controls. The genotypes obtained were evaluated for main association effects and potential gene-gene interactions. MC1R, TYR, VDR and SLC45A2 genes were found to be associated with CMM in our population. The results obtained for major function MC1R mutations were the most significant [with odds ratio (OR)=1.787, confidence interval (CI)=1.320-2.419 and P=1.715(-4)], followed by TYR (rs1393350) (with OR=1.569, CI=1.162-2.118, P=0.003), VDR (GCCC haplotype in rs2238136-rs4516035-rs7139166-rs11568820 block) (with OR=5.653, CI=1.794-17.811, P=0.003) and SLC45A2 (rs16891982) (with OR=0.238, CI=0.057-0.987, P=0.048). The study also detected significant intermolecular epistatic effects between MC1R and TYR, SLC45A2 and VDR, HERC2 and VDR, OCA2 and TPCN2, as well as intramolecular interactions between variants within the genes MC1R and VDR. In the final multivariate logistic regression model for CMM development, only the gene-gene interactions discovered remained significant, showing that epistasis may be an important factor in the risk of melanoma.
The risk of developing skin cancers is dependent on a combination of environmental factors and personal genetic predispositions. Basal cell carcinoma (BCC) has been associated with single nucleotide polymorphisms in several pigmentation genes; however, there is still controversy concerning the mechanism by which these variants may increase the risk of BCC. The pathway may lead to pigmentation alone, but evidence for their independent influence is growing. Using a single base extension protocol, candidate polymorphisms within 11 known pigment-related genes were studied for their association with BCC in a population sample consisting of 164 patients and 707 controls. The significance of variation within the MC1R gene was confirmed and, in addition, position rs12203592 within the IRF4 gene was shown to be associated with BCC. These associations remained significant after adjustment for skin color. Gene-gene interactions were found to influence susceptibility to BCC. Among interacting genes are the two above-mentioned loci with main effect on BCC risk and additionally KITLG, TYRP1, ASIP and TYR. The obtained results indicate that polymorphism at MC1R and IRF4 constitute pigmentation-independent risk factor in the development of BCC. Moreover, susceptibility to BCC may be influenced by epistatic effects between pigmentation genes.
The analysis included 78 patients (42 men and 36 women) aged 48 to 67 years treated with cytostatics because of a neoplastic disease. In all the patients examined was evaluated the influence of the chemotherapy carried out on the glutathione peroxidase (GPx) and glutathione reductase (GR) activities. It was confirmed that the effect of the action on the glutathione enzymes (GE) activity of the antineoplastic chemotherapy changes depending on the duration of the treatment with cytostatics. In the end this activity settles at a high level, statistically significantly higher than that registered before the beginning of the antineoplastic treatment. The increase of the GE activity is mainly favoured by the chemotherapy following the schemes FAC (5-fluorouracyl + doxorubicin + endoxan) and PAC (cisplatin + cyclofosfamide + pharmorubicin).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.