As obligate photoautotrophs, plants are inevitably exposed to ultraviolet (UV) radiation. Because of stratospheric ozone depletion, UV has become more and more dangerous to the biosphere. Therefore, it is important to understand UV perception and signal transduction in plants. In the present study, we show that lesion simulating disease 1 (LSD1) and enhanced disease susceptibility 1 (EDS1) are antagonistic regulators of UV-C-induced programmed cell death (PCD) in Arabidopsis thaliana. This regulatory dependence is manifested by a complex deregulation of photosynthesis, reactive oxygen species homeostasis, antioxidative enzyme activity and UV-responsive genes expression. We also prove that a UV-C radiation episode triggers apoptotic-like morphological changes within the mesophyll cells. Interestingly, chloroplasts are the first organelles that show features of UV-C-induced damage, which may indicate their primary role in PCD development. Moreover, we show that Arabidopsis Bax inhibitor 1 (AtBI1), which has been described as a negative regulator of plant PCD, is involved in LSD1-dependent cell death in response to UV-C. Our results imply that LSD1 and EDS1 regulate processes extinguishing excessive energy, reactive oxygen species formation and subsequent PCD in response to different stresses related to impaired electron transport.
Post-transcriptional gene silencing (PTGS), or RNA silencing, is one of the key mechanisms of antiviral defence used by plants. To counter this defence response, viruses produce suppressor proteins that are able to inhibit the PTGS pathway or to interfere with some of its function. The aim of this study was to evaluate the RNA silencing suppressor (RSS) activity of P0 proteins from selected European isolates of the beet-infecting poleroviruses beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV) using two different experimental systems: (i) agro-infiltration of Nicotiana benthamiana green fluorescent protein-positive plants and (ii) mechanical inoculation of Chenopodium quinoa using a beet necrotic yellow vein virus (BNYVV, genus Benyvirus) RNA3-based replicon. The results demonstrated that P0 of most BMYV isolates exhibited RSS activity, although at various efficiencies among isolates. Conversely, P0 of BChV isolates displayed no RSS activity in either of the two systems under the experimental conditions used. These results are the first reported evidence that P0 proteins of two closely related beet poleroviruses show strain-specific differences in their effects on RNA silencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.