The rate of charge-parity switching in a full-shell superconductor-semiconductor nanowire qubit is measured by directly monitoring the dispersive shift of a readout resonator. At zero magnetic field, the measured switching time scale TP is on the order of 100 ms. Two-tone spectroscopy data post-selected on charge-parity is demonstrated. With increasing temperature or magnetic field, TP is at first constant, then exponentially suppressed, consistent with a model that includes both non-equilibrium and thermally activated quasiparticles. As TP is suppressed, qubit lifetime T1 also decreases. The long TP ∼ 0.1 s at zero field is promising for future development of qubits based on hybrid nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.