PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their "binding landscape"). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF-RNA interactions. FBF-1 and FBF-2 can bind sites in the 5 ′ UTR, coding region, or 3 ′ UTR, but have a strong bias for the 3 ′ end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2.
Background Group B streptococcus (GBS) causes serious diseases in newborn infants, often resulting in lifelong neurologic impairments or death. Prophylactic vaccination of pregnant women prior to delivery could provide comprehensive protection, as early onset and late-onset disease and maternal complications potentially could be addressed. Methods Capsular polysaccharide conjugate vaccine GBS6 was designed using surveillance data yielded by whole-genome sequencing of a global collection of recently recovered GBS isolates responsible for invasive neonatal GBS disease. Capsular polysaccharides were isolated, oxidized using sodium periodate, and conjugated to CRM 197 by reductive amination in dimethyl sulfoxide. Immune responses in mice and rhesus macaques were measured in a multiplex Luminex immunoglobulin G (IgG) assay and opsonophagocytic activity assays. Results The optimized conjugates were immunogenic, alone and in combination, in mice and rhesus macaques, inducing IgG antibodies that mediated opsonophagocytic killing. Active immunization of murine dams with GBS6 prior to mating resulted in serotype-specific protection of pups from a lethal challenge with GBS. Protection following passive administration of serotype-specific IgG monoclonal antibodies to dams demonstrated conclusively that anticapsular polysaccharide IgG alone is sufficient for protection. Conclusions The findings support the ongoing clinical evaluation of maternal GBS6 vaccination as a potential alternative method to prevent GBS disease in infants.
Glycoconjugate vaccines are a critical component of the medical arsenal against infectious diseases. This established field continues, however, to experience failures in the clinic. The lack of fundamental understanding of factors controlling clinical efficacy of glycoconjugate vaccines is discussed while key parameters demanding focused and collaborative research are identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.