In the work, a mathematical description of thermal processes in laser welding with the use of the classical theory of thermal conductivity was performed. The thermal cycle under the action of radiation on the surface was analyzed using the models of overall heat balance, distributed surface, point, circular and linear heat sources. The modeling of welding process consisted in solving the problem of forming thermal fields in viscoelastic polymer materials at a moving inner heat source. It was assumed that the upper part is transparent to laser radiation and the lower one has a set coefficient of light beam absorption, and their thermophysical characteristics depend on temperature. The equations of thermal conductivity and defining equations were formulated, supplemented by the boundary conditions of convective heat transfer and the initial temperature distribution. For the numerical implementation of certain equations the finite element method was used, which is based on an alternative formulation of the problem. The results of mathematical modeling showed the peculiarities of the formation of thermal fields in the transmission laser welding of polymer films at different parameters of welding mode.
This article analyzes the regulatory documents on determination of protective action time of gas filters and FILTERS-ADSORBER, which are designed for individual and collective protection. The current absence of a current regulatory document in Ukraine is indicated according to which protective action time of filters is determined, adds relevance in the implementation of the method of determining this filter characteristic. The theoretical aspects of effect of absorbing capacity of filters are highlighted, the fundamental principles of adsorption are linked with the time of protective action time of filters against hazardous chemicals. The process of adsorption on the surface and formation of sorption layers in case of polymolecular adsorption is schematically shown, as described by the BET theory. It is indicated that protective action time on the direct depends on particular case of adsorption - chemisorption. The types of adsorption isotherms are considered, they are characterized and the Langmuir and BET equations are given. The protective action of filter as a phenomena of chemisorption on the surface of sorbent is described by the Langmuir isotherm, in particular, parts I and II. When determining protective action time the monomolecular adsorption of hazardous chemical substance occurs with formation of a chemical bond with the surface. The chemical bond is formed from the impregnated catalyst due to the redistribution of electrons. Solutions of metal salts are used as a catalyst, and the metal ion itself acts as an active center during the process of chemisorption. The role of adsorption kinetics in the implementation of sanitary cleaning of gas from the pollutant in the practical plane is considered. The possibility of calculating the amount of a chemical that a sorbent can absorb is shown by constructing an adsorption isotherm of a standard substance and a pollutant adsorption working line. Adsorption isotherm was captured for adsorbent from FG-130 FPK 95 filter on KELVIN 1042 sorptometr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.