Interactions between human recombinant H- and L-ferritins and human lymphocytes were studied in vitro by direct binding assays and by flow cytometry. L-ferritin did not cause detectable specific binding, whereas H-ferritin showed a specific and saturable binding that increased markedly in phytohemagglutinin (PHA)-stimulated cells. This ferritin bound up to 30% of CD4+ and CD8+ T-lymphocytes and most B cells, indicating that expression of ferritin binding sites is not related to cell lineage or function. Dual-color flow cytometry experiments showed that ferritin binding sites were present on cells expressing the proliferation markers HLA-DR, MLR3, interleukin 2 (IL- 2), and transferrin receptors (Tf-R). In addition, after PHA induction, the time course of the expression of H-ferritin binding sites was similar to those of the above proliferation markers. Ferritin binding sites were observed in lymphocytes at all cell cycle phases, including the early S-phase. H-Ferritin at nanomolar and picomolar concentrations had an inhibitory effect on PHA-induced blastogenesis. We propose that H-ferritin binding sites behave like proliferation markers, with the unusual function of downregulating proliferation.
Purified recombinant human ferritin composed solely of H subunit was radiolabeled and incubated with proerythroleukemic K562 human cells. A specific binding was detected, and it could be displaced only by ferritins, natural or recombinant, containing large proportion of the H subunit. The specific ferritin H-chain binding was saturable, and cells showed 17,000 to 23,000 binding sites per cell. The affinity constant measured at 37 degrees C was of 3 x 10(8) M-1. Treatment with pronase eliminated the specific binding. The binding sites were expressed in a high number during the cellular exponential phase of growth and progressively decreased to disappear when cells reached the plateau phase. Treatment of the cells with desferrioxamine increased recombinant H-ferritin binding, while iron had little effect. K562 cells induced to differentiate by hemin failed to bind ferritin H. Ferritin H-chain binding capacity is present on various cell lines such as HL60, lung cancer, and hepatoma cells. Analysis of the binding sites by western blotting showed a peptide with apparent mol wt of about 100 kd.
Purified recombinant human ferritin composed solely of H subunit was radiolabeled and incubated with proerythroleukemic K562 human cells. A specific binding was detected, and it could be displaced only by ferritins, natural or recombinant, containing large proportion of the H subunit. The specific ferritin H-chain binding was saturable, and cells showed 17,000 to 23,000 binding sites per cell. The affinity constant measured at 37 degrees C was of 3 x 10(8) M-1. Treatment with pronase eliminated the specific binding. The binding sites were expressed in a high number during the cellular exponential phase of growth and progressively decreased to disappear when cells reached the plateau phase. Treatment of the cells with desferrioxamine increased recombinant H-ferritin binding, while iron had little effect. K562 cells induced to differentiate by hemin failed to bind ferritin H. Ferritin H-chain binding capacity is present on various cell lines such as HL60, lung cancer, and hepatoma cells. Analysis of the binding sites by western blotting showed a peptide with apparent mol wt of about 100 kd.
We studied the relation between ferritin cellular binding and suppressive activity of recombinant H- and L-ferritin on human erythroid cells at different proliferation/differentiation phases. L-ferritin failed to show any suppressive activity or detectable binding to erythroblasts at any stage of maturation. In contrast, H-ferritin demonstrated binding to erythroblasts derived from peripheral BFU-E cells which increased steadily between 7-14 days of culture up to 15,000 molecules per cell. Reticulocytes and erythrocytes failed to bind either L- or H-ferritin. H-ferritin suppressed BFU-E colony formation and reduced K562 cell proliferation at nanomolar concentrations. This suggests that the expression of H-ferritin binding sites is modulated by cellular proliferation and differentiation, that cells expressing H-ferritin binding sites are sensitive to ferritin suppressive activity and that a causal relation exists between ferritin cellular binding and suppressive activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.