Following translation of the SARS‐CoV‐2 RNA genome into two viral polypeptides, the main protease M pro cleaves at eleven sites to release non‐structural proteins required for viral replication. M Pro is an attractive target for antiviral therapies to combat the coronavirus‐2019 disease (COVID‐19). Here, we have used native mass spectrometry (MS) to characterize the functional unit of M pro . Analysis of the monomer‐dimer equilibria reveals a dissociation constant of K d = 0.14 ± 0.03 µM, revealing M Pro has a strong preference to dimerize in solution. Developing an MS‐based kinetic assay we then characterized substrate turnover rates by following temporal changes in the enzyme‐substrate complexes, which are effectively “flash‐frozen” as they transition from solution to the gas phase. We screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the catalytically active dimer, slow the rate of substrate processing by ~35%. This information was readily obtained and, together with analysis of the x‐ray crystal structures of these enzyme‐small molecule complexes, provides a starting point for the development of more potent molecules that allosterically regulate M Pro activity.
Herein we provide a living summary of the data generated during the COVID Moonshot project focused on the development of SARS-CoV-2 main protease (Mpro) inhibitors. Our approach uniquely combines crowdsourced medicinal chemistry insights with high throughput crystallography, exascale computational chemistry infrastructure for simulations, and machine learning in triaging designs and predicting synthetic routes. This manuscript describes our methodologies leading to both covalent and non-covalent inhibitors displaying protease IC50 values under 150 nM and viral inhibition under 5 uM in multiple different viral replication assays. Furthermore, we provide over 200 crystal structures of fragment-like and lead-like molecules in complex with the main protease. Over 1000 synthesized and ordered compounds are also reported with the corresponding activity in Mpro enzymatic assays using two different experimental setups. The data referenced in this document will be continually updated to reflect the current experimental progress of the COVID Moonshot project, and serves as a citable reference for ensuing publications. All of the generated data is open to other researchers who may find it of use.
C-β-d-Glucopyranosyl pyrrole derivatives were prepared in the reactions of pyrrole, 2-, and 3-aryl-pyrroles with O-peracetylated β-d-glucopyranosyl trichloroacetimidate, while 2-(β-d-glucopyranosyl) indole was obtained by a cross coupling of O-perbenzylated β-d-glucopyranosyl acetylene with N-tosyl-2-iodoaniline followed by spontaneous ring closure. An improved synthesis of O-perbenzoylated 2-(β-d-glucopyranosyl) imidazoles was achieved by reacting C-glucopyranosyl formimidates with α-aminoketones. The deprotected compounds were assayed with isoforms of glycogen phosphorylase (GP) to show no activity of the pyrroles against rabbit muscle GPb. The imidazoles proved to be the best known glucose derived inhibitors of not only the muscle enzymes (both a and b) but also of the pharmacologically relevant human liver GPa (Ki = 156 and 26 nM for the 4(5)-phenyl and -(2-naphthyl) derivatives, respectively). An X-ray crystallographic study of the rmGPb-imidazole complexes revealed structural features of the strong binding, and also allowed to explain the absence of inhibition for the pyrrole derivatives.
In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.