The brain regions that are critically associated with visual neglect have become intensely disputed. In particular, one study of middle cerebral artery (MCA) stroke patients has claimed that the key brain region associated with neglect is the mid portion of the superior temporal gyrus (STG), on the lateral surface of the right hemisphere, rather than the posterior parietal lobe. Such a result has wide-ranging implications for both our understanding of the normal function these cortical areas and the potential mechanisms underlying neglect. Here, we use novel high resolution MRI protocols to map the lesions of 35 right-hemisphere patients who had suffered either MCA or posterior cerebral artery (PCA) territory stroke. For patients with MCA territory strokes, the critical area involved in all neglect patients was the angular gyrus of the inferior parietal lobe (IPL). Although the STG was damaged in half of our MCA neglect patients, it was spared in the rest. For PCA territory strokes, all patients with neglect had lesions involving the parahippocampal region, on the medial surface of the temporal lobe. PCA patients without neglect did not have damage to this area. We conclude that damage to two posterior regions, one in the IPL and the other in the medial temporal lobe, is associated with neglect. Although some neglect patients do have damage to the STG, our findings challenge the recent influential proposal that lesions of this area are critically associated with neglect. Instead, our results implicate the angular gyrus and parahippocampal region in this role.
Objectives: We describe a novel rehabilitation tool for patients with homonymous hemianopia based on a visual search (VS) paradigm that is portable, inexpensive, and easy to deploy. We hypothesised that by training patients to improve the efficiency of eye movements made in their blind field their disability would be alleviated. Methods: Twenty nine patients with homonymous visual field defects (HVFD) without neglect practised VS paradigms in 20 daily sessions over one month. Search fields comprising randomly positioned target and distracter elements, differing by a single feature, were displayed for three seconds on a dedicated television monitor in the patients' homes. Improvements were assessed by examining response time (RT), error rates in VS, perimetric visual fields (VFs) and visual search fields (VSFs), before and after treatment. Functional improvements were measured using objective visual tasks which represented activities of daily living (ADL) and a subjective questionnaire. Results: As a group the patients had significantly shorter mean RT in VS after training (p,0.001) and demonstrated a variety of mechanisms to account for this. Improvements were confined to the training period and maintained at follow up. Three patients had significantly longer RT after training. They had high initial error rates which improved with training. Patients performed ADL tasks significantly faster after training and reported significant subjective improvements. There was no concomitant enlargement of the VF, but there was a small but significant enlargement of the VSF. Conclusion: Patients can improve VS with practice. This usually involves shorter RTs, but occasionally a longer RT in a complex speed-accuracy trade-off. These changes translate to improved overall visual function, assessed objectively and subjectively, suggesting that they represent robust training effects. The underlying mechanism may involve the adoption of compensatory eye movement strategies.
Objectives-This study examined the scanpaths of patients with homonymous hemianopia while viewing naturalistic pictures in their original and also spatially filtered forms. Features of their scanpaths with respect to various saccade and fixation parameters were examined to determine whether they develop compensatory eye movement strategies. The eVects of various lesion parameters including location, size, and age on the evolution of such strategies were considered. Methods-Eye movements of eight patients with homonymous hemianopia (four left, four right), but lacking neglect, were recorded while they viewed 22 images of real scenes, and they were compared with the eye movements of eight age matched controls. Subjects viewed each image for 3 seconds, initially in a spatially filtered form in which much of the semantic content had been removed, and then in their unfiltered, original form. Results-Patients diVered significantly from controls in various fixation and saccade parameters. For fixation parameters patients with hemianopia fixated diVerent spatial positions from controls, made more fixations which were more widely distributed and of shorter duration than controls, and spent a greater proportion of their total fixation time in the area corresponding to their blind hemifield. They did not make significantly more refixations than controls. For saccade parameters patients made more saccades into their blind hemifield, these saccades having shorter latencies and shorter amplitudes than those made into their seeing field, and had longer scanpaths than control subjects. The amplitude of their first saccade was longer than that of controls although its direction did not correlate simply with the side of the field defect. Their mean saccade amplitude was similar to that of controls. Filtering out high spatial frequencies within images seemed to accentuate the described diVerences between eye movement characteristics of hemianopes and controls. Scanpath diVerences correlated with increasing age but not location or size of lesions causing the hemianopia. Conclusion-Various features of scanpaths produced by hemianopes were different from normal subjects. These diVerences correlated with lesion age and may reflect the evolution of a compensatory eye movement strategy. (J Neurol Neurosurg Psychiatry 2000;69:751-759)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.