Improper land application of excess poultry waste (PW) causes environmental issues and other problems. Meanwhile there is an increasing trend of using PW as an alternative energy resource. The Higher Heating Value (HHV) is critical for designing and analyzing the PW conversion process. Several proximate-based mathematical models have been proposed to estimate the HHV of biomass, coal, and other solid fuels. Nevertheless, only a small number of studies have focused on a subclass of fuels, especially for PW. The aim of this study is to develop proximate-based regression models for an HHV prediction of PW. Sample data of PW were collected from open literature to develop regression models. The resulting models were then validated by additional PW samples and other published models. Results indicate that the most accurate model contains linear (all proximate components), polynomial terms (quadratic and cubic of volatile matter), and interaction effect (fixed carbon and ash). Moreover, results show that best-fit regression model has a higher R 2 (91.62%) and lower estimation errors than the existing proximate-based models. Therefore, this new regression model can be an excellent tool for predicting the HHV of PW and does not require any expensive equipment that measures HHV or elemental compositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.