Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δϵ(.), where Δϵ (.) stands for any one of the spectral functions σϵ (.), σlϵ (.) and σrϵ (.) for some ϵ > 0. We also characterize the additive (resp. non-linear) maps from B(X) onto B(Y) preserving the pseudospectrum σϵ (.) of generalized products of operators for some ϵ > 0 (resp. for every ϵ > 0).
Let B(H ) the algebra of all bounded linear operators on a complex Hilbert space H with dim H 3 . Let W , V be subsets of B(H ) which contain all rank-one operators. Denote by r ε (A) the condition spectral radius of A ∈ B(H ) . We determine the form of surjective maps (2010): Primary 47B49, Secondary 47B48, 47A10, 46H05.
Mathematics subject classification
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.