Optical trapping and ions combine unique advantages of independently striving fields of research. Light fields can form versatile potential landscapes, such as optical lattices, for neutral and charged atoms, while avoiding detrimental implications of established radiofrequency traps. Ions interact via long-range Coulomb forces and permit control and detection of their motional and electronic states on the quantum level. Here we show optical trapping of 138 Ba þ ions in the absence of radio-frequency fields via a far-detuned dipole trap, suppressing photon scattering by three orders of magnitude and the related recoil heating by four orders of magnitude. To enhance the prospects for optical as well as hybrid traps, we demonstrate a method for stray electric field compensation to a level below 9 mV m À 1 . Our results will be relevant, for example, for ion-atom ensembles, to enable 4-5 orders of magnitude lower common temperatures, accessing the regime of ultracold interaction and chemistry, where quantum effects are predicted to dominate.
The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one-and two-dimensional crystals.
IV-VI multiple-quantum-well lasers with seven wells made from molecular-beam-epitaxy grown PbSe/PbSrSe have been operated in pulsed mode up to 282 K at a wavelength of λ=4.2 μm. This is the highest midinfrared quantum well laser operation temperature observed to date.
For the example of the D 1 line of 87 Rb we analyze the experimental parameters that control the transient response of electromagnetically induced transparency. Quantum coherent free-induction decay is observed on time scales exceeding several milliseconds in a buffer-gas vapor cell. Numerical solutions of the quantum master equation and approximate analytical solutions are tested and absolute comparisons of the transient time scales, power broadening, resonance contrast, and frequency shifts are made. Two actively-phase-locked lasers are employed. The effects of laser phase noise that is not fully correlated are studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.