BackgroundMetabolic syndrome (MetS) may be associated with knee osteoarthritis (OA), but the association between the individual components and OA are not well-understood. We aimed to study the effect of hypercholesterolemia on synovial inflammation in knee OA.MethodsOA was surgically induced in rabbits fed with standard diet (OA group, n = 10) or in rabbits fed with high fat diet (OA-HFD, n = 10). Healthy rabbits receiving standard diet (Control, n = 10) or fed with HFD (HFD, n = 6) were also monitored. Twelve weeks after OA induction, synovial membranes were isolated and processed for studies.ResultsAnimals fed HFD showed higher levels of total serum cholesterol, triglycerides and C-reactive protein than control rabbits. Twelve weeks after OA induction, synovial membrane inflammation and macrophage infiltration were increased in rabbits with OA, particularly in the OA-HFD group. Extensive decrease of synovial adipose tissue area, adipocyte size and perilipin-1A synthesis were observed in the OA-HFD group in comparison to the OA and control groups. The HFD further increased the proinflammatory mediators IL-1β, IL-6 and TNF in the OA synovium. However, the synovial gene expression of adipokines, such as leptin and adiponectin, were markedly decreased in the rabbits with OA, especially in the OA-HFD group, in correlation with adipose tissue loss. However, circulating leptin was upregulated in the HFD and OA-HFD groups.ConclusionOur results indicate that a HFD is an aggravating factor worsening synovial membrane inflammation during OA, guided by increased infiltration of macrophages and removal of the adipose tissue, together with a remarkable presence of proinflammatory factors. Synovial adipocytes and dyslipemia could probably play pivotal roles in OA joint deterioration in patients with MetS, supporting that the link between obesity and OA transcends mechanical loading.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-017-1473-z) contains supplementary material, which is available to authorized users.
Osteopenia and fragility fractures have been associated with human immunodeficiency virus (HIV) infection. Tenofovir, a common antiviral in HIV treatment, also leads to increases in bone catabolism markers and decreased BMD in children and young adults. In murine models and human cell lines, tenofovir inhibits adenosine triphosphate release and decreases extracellular adenosine levels. Adenosine and adenosine A2A receptor inhibit osteoclast formation, and increase local adenosine concentration with dipyridamole, an agent that blocks adenosine cellular uptake and stimulates new bone formation as well as bone morphogenic protein 2. We hypothesized that tenofovir regulates bone resorption by diminishing endogenous adenosine levels and questioned whether dipyridamole may be a useful treatment to counteract the deleterous bone effects of tenofovir. Primary murine osteoclasts were induced by M‐CSF/RANKL, and the number of TRAP‐positive‐cells was studied after challenge with tenofovir alone or in combination with dipyridamole. Differentiation markers were studied by RT‐PCR and MAPK/NFkB expression by Western blot. Male C57Bl/6 mice were treated as follows: saline 0.9% (control), tenofovir 75 mg/kg/day, dipyridamole 25 mg/kg/day, combination tenofovir/dipyridamole (n = 10, 4 weeks). Calcein/Alizarin Red‐labeling of newly formed bone was used, and long bones were prepared for micro‐computed tomography (μCT)/histology. Tenofovir produced a dose‐dependent increase in osteoclast differentiation (EC50 = 44.5nM) that was reversed by dipyridamole (IC50 = 0.3 μM). Tenofovir increased cathepsin K and NFATc1 mRNA levels and dipyridamole reversed the effect. Dipyridamole reversed the effect of tenofovir on pERK1/2, pp38, and NFkB nuclear translocation. Mice treated with tenofovir lost nearly 10% of their body weight (p < 0.001). μCT revealed decreased BMD and altered trabecular bone in tenofovir‐treated mice, reversed by dipyridamole. TRAP‐staining showed increased osteoclasts in tenofovir‐treated mice (p < 0.005), an effect reversed by dipyridamole. Similar results were obtained for cathepsin K and CD68. RANKL‐positive cells were increased in tenofovir‐treated mice, whereas osteoprotegerin‐positive cells were decreased; both effects were reversed by dipyridamole. These results suggest that treatment with agents that increase local adenosine concentrations, like dipyridamole, might prevent bone loss following tenofovir treatment. © 2019 American Society for Bone and Mineral Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.